Please wait a minute...
Chin. Phys. B, 2018, Vol. 27(9): 097304    DOI: 10.1088/1674-1056/27/9/097304
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES Prev   Next  

Electric field manipulation of multiple nonequivalent Dirac cones in the electronic structures of hexagonal CrB4 sheet

Jinkun Wang(王锦坤)1, Yajiao Ke(柯亚娇)1, Qingxing Xie(谢晴兴)1, Yanli Li(李艳丽)1, Jiafu Wang(王嘉赋)1,2
1 Department of Physics and Institute of Applied Condensed Matter Physics, School of Science, Wuhan University of Technology, Wuhan 430070, China;
2 Hubei Engineering Research Center of RF-Microwave Technology and Application, Wuhan University of Technology, Wuhan 430070, China
Abstract  

Two-dimensional materials with Dirac cones have significant applications in photoelectric technology. The origin and manipulation of multiple Dirac cones need to be better understood. By first-principle calculations, we study the influence of external fields on the electronic structure of the hexagonal CrB4 sheet with double nonequivalent Dirac cones. Our results show that the two cones are not sensitive to tensile strain and out-of-plane electric field, but present obviously different behaviors under the in-plane external electric field (along the B-B direction), i.e., one cone holds while the other vanishes with a gap opening. More interestingly, a new nonequivalent cone emerges under a proper in-plane electric field. We also discuss the origin of the cones in CrB4 sheet. Our study provides a new method on how to obtain Dirac cones by the external field manipulation, which may motivate potential applications in nanoelectronics.

Keywords:  borophene      multiple Dirac cones      electric field manipulation      first-principle calculation  
Received:  20 July 2018      Revised:  20 August 2018      Accepted manuscript online: 
PACS:  73.22.-f (Electronic structure of nanoscale materials and related systems)  
  71.20.Ps (Other inorganic compounds)  
Fund: 

Project supported by the National Natural Sciences Foundation of China (Grant Nos. 11704294 and 11504281), the Natural Science Foundation of Hubei Province, China (Grant No. 2016CFB586), and the Fundamental Research Funds for the Central Universities, China (Grant Nos. 2017IVA078, 2018IVB017, 2017IB013, 2018IB009, and 2018IB011).

Corresponding Authors:  Yajiao Ke, Jiafu Wang     E-mail:  keyajiao@whut.edu.cn;jasper@whut.edu.cn

Cite this article: 

Jinkun Wang(王锦坤), Yajiao Ke(柯亚娇), Qingxing Xie(谢晴兴), Yanli Li(李艳丽), Jiafu Wang(王嘉赋) Electric field manipulation of multiple nonequivalent Dirac cones in the electronic structures of hexagonal CrB4 sheet 2018 Chin. Phys. B 27 097304

[1] Novoselov K S, Geim A K, Morozov S V, Jiang D, Zhang Y, Dubonos S V, Grigorieva I V and Firsov A A 2004 Science 306 666
[2] Song X F, Hu J L and Zeng H B 2013 J. Mater. Chem. C 1 2952
[3] Zawadzki W 2017 J. Phys.-Condes. Matter 29 373004
[4] Liu H, Neal A T, Zhu Z, Luo Z, Xu X F, Tomanek D and Ye P D 2014 ACS Nano 8 4033
[5] Zhao J J, Liu H S, Yu Z M, Quhe R G, Zhou S, Wang Y Y, Liu C C, Zhong H X, Han N N, Lu J, Yao Y G and Wu K H 2016 Prog. Mater. Sci. 83 24
[6] Yuan J H, Yu N N, Xue K H and Miao X S 2017 Appl. Surf. Sci. 409 85
[7] Yuan J H, Xie Q X, Yu N N and Wang J F 2017 Appl. Surf. Sci. 394 625
[8] Wu Z B, Zhang Y Y, Li G, Du S X and Gao H J 2018 Chin. Phys. B 27 077302
[9] Mannix A J, Zhou X F, Kiraly B, Wood J D, Alducin D, Myers B D, Liu X L, Fisher B L, Santiago U, Guest J R, Yacaman M J, Ponce A, Oganov A R, Hersam M C and Guisinger N P 2015 Science 350 1513
[10] Wu X, Dai J, Zhao Y, Zhuo Z, Yang J and Zeng X C 2012 ACS Nano 6 7443
[11] Penev E S, Bhowmick S, Sadrzadeh A and Yakobson B I 2012 Nano Lett. 12 2441
[12] Ma F, Jiao Y, Gao G, Gu Y, Bilic A, Chen Z and Du A 2016 Nano Lett. 16 3022
[13] Corso M, Auwarter W, Muntwiler M, Tamai A, Greber T and Osterwalder J 2004 Science 303 217
[14] Piazza Z A, Hu H S, Li W L, Zhao Y F, Li J and Wang L S 2014 Nat. Commun. 5 3113
[15] Xu J Q, Chang Y Y, Gan L, Ma Y and Zhai T Y 2015 Adv. Sci. 2 1500023
[16] Li D F, Chen Y, He J, Tang Q Q, Zhong C Y and Ding G Q 2018 Chin. Phys. B 27 036303
[17] Zhang L Z, Wang Z F, Du S X, Gao H J and Liu F 2014 Phys. Rev. B 90 161402(R)
[18] Zhang H, Li Y, Hou J, Du A and Chen Z 2016 Nano Lett. 16 6124
[19] Xie S Y, Li X B, Tian W Q, Chen N K, Zhang X L, Wang Y L, Zhang S B and Sun H B 2014 Phys. Rev. B 90 035447
[20] Xu C, Li Q, Liu C M, Duan M Y and Wang H K 2016 Int. J. Mod. Phys. B 30 1650098
[21] Zhang C M, Jiao Y L, Ma F X, Bottle S, Zhao M W, Chen Z F and Du A J 2017 Phys. Chem. Chem. Phys. 19 5449
[22] Polini M, Guinea F, Lewenstein M, Manoharan H C and Pellegrini V 2013 Nat. Nanotechnol. 8 625
[23] Naumis G G, Barraza-Lopez S, Oliva-Leyva M and Terrones H 2017 Rep. Prog. Phys. 80 096501
[24] Zhan D, Yan J X, Lai L F, Ni Z H, Liu L and Shen Z X 2012 Adv. Mater. 24 4055
[25] Rowlands D A and Zhang Y Z 2014 Chin. Phys. B 23 037101
[26] Xiong W, Xia C, Du J, Wang T, Peng Y, Wei Z and Li J 2017 Nanotechnology 28 195702
[27] Kaloni T P, Cheng Y C and Schwingenschlogl U 2013 J. Appl. Phys. 113 104305
[28] Wang Y L and Ding Y 2013 Solid State Commun. 155 6
[29] Wei L, Zhang X M, Liu X B, Zhou H C, Yang B and Zhao M W 2017 RSC Adv. 7 52065
[30] Zhong X L, Yap Y K, Pandey R and Karna S P 2011 Phys. Rev. B 83 193403
[31] Mu Y W, Ding F and Lu H G 2015 RSC Adv. 5 11392
[32] Zhang H, Ma Y and Chen Z 2015 Nanoscale 7 19152
[33] Cui H J, Sheng X L, Yan Q B, Zheng Q R and Su G 2013 Phys. Chem. Chem. Phys. 15 8179
[34] Kim J, Jhi S H and Wu R 2016 Nano Lett. 16 6656
[35] Perdew J P, Burke K and Ernzerhof M 1996 Phys. Rev. Lett. 77 3865
[36] Kresse G and Hafner J 1993 Phys. Rev. B 47 558
[37] Kresse G and Joubert D 1999 Phys. Rev. B 59 1758
[38] Elahi M, Khaliji K, Tabatabaei S M, Pourfath M and Asgari R 1953 Phys. Rev. B 91 8
[39] Gong P L, Deng B, Huang L F, Hu L, Wang W C, Liu D Y, Shi X Q, Zeng Z and Zou L J 2017 J. Phys. Chem. C 121 20931
[40] Sakoda K 2012 Opt. Express 20 9925
[1] Pressure-induced stable structures and physical properties of Sr-Ge system
Shuai Han(韩帅), Shuai Duan(段帅), Yun-Xian Liu(刘云仙), Chao Wang(王超), Xin Chen(陈欣), Hai-Rui Sun(孙海瑞), and Xiao-Bing Liu(刘晓兵). Chin. Phys. B, 2023, 32(1): 016101.
[2] High-throughput computational material screening of the cycloalkane-based two-dimensional Dion—Jacobson halide perovskites for optoelectronics
Guoqi Zhao(赵国琪), Jiahao Xie(颉家豪), Kun Zhou(周琨), Bangyu Xing(邢邦昱), Xinjiang Wang(王新江), Fuyu Tian(田伏钰), Xin He(贺欣), and Lijun Zhang(张立军). Chin. Phys. B, 2022, 31(3): 037104.
[3] AA-stacked borophene-graphene bilayer as an anode material for alkali-metal ion batteries with a superhigh capacity
Yi-Bo Liang(梁艺博), Zhao Liu(刘钊), Jing Wang(王静), and Ying Liu(刘英). Chin. Phys. B, 2022, 31(11): 116302.
[4] Anisotropic plasmon dispersion and damping in multilayer 8-Pmmn borophene structures
Kejian Liu(刘可鉴), Jian Li(李健), Qing-Xu Li(李清旭), and Jia-Ji Zhu(朱家骥). Chin. Phys. B, 2022, 31(11): 117303.
[5] Electronic structures of vacancies in Co3Sn2S2
Yuxiang Gao(高于翔), Xin Jin(金鑫), Yixuan Gao(高艺璇), Yu-Yang Zhang(张余洋), and Shixuan Du(杜世萱). Chin. Phys. B, 2021, 30(7): 077102.
[6] Surface-regulated triangular borophene as Dirac-like materials from density functional calculation investigation
Wenyu Fang(方文玉), Wenbin Kang(康文斌), Jun Zhao(赵军), Pengcheng Zhang(张鹏程). Chin. Phys. B, 2020, 29(9): 096301.
[7] Lattice thermal conductivity of β12 and χ3 borophene
Jia He(何佳), Yulou Ouyang(欧阳宇楼), Cuiqian Yu(俞崔前), Pengfei Jiang(蒋鹏飞), Weijun Ren(任卫君), and Jie Chen(陈杰). Chin. Phys. B, 2020, 29(12): 126503.
[8] Band engineering of B2H2 nanoribbons
Bao Lei(雷宝), Yu-Yang Zhang(张余洋), Shi-Xuan Du(杜世萱). Chin. Phys. B, 2019, 28(4): 046803.
[9] Band engineering of double-wall Mo-based hybrid nanotubes
Lei Tao(陶蕾), Yu-Yang Zhang(张余洋), Jiatao Sun(孙家涛), Shixuan Du(杜世萱), Hong-Jun Gao(高鸿钧). Chin. Phys. B, 2018, 27(7): 076104.
[10] Review of thermal transport and electronic properties of borophene
Dengfeng Li(李登峰), Ying Chen(陈颖), Jia He(何佳), Qiqi Tang(汤琪琪), Chengyong Zhong(钟承勇), Guangqian Ding(丁光前). Chin. Phys. B, 2018, 27(3): 036303.
[11] Density functional theory analysis of electronic structure and optical properties of La-doped Cd2SnO4 transparent conducting oxide
Mei Tang(汤梅), Jia-Xiang Shang(尚家香), Yue Zhang(张跃). Chin. Phys. B, 2018, 27(1): 017101.
[12] Modulating the properties of monolayer C2N: A promising metal-free photocatalyst for water splitting
Song Yu(俞松), Yong-Chao Rao(饶勇超), Xiang-Mei Duan(段香梅). Chin. Phys. B, 2017, 26(8): 087301.
[13] First-principle study of the structural, electronic, and optical properties of SiC nanowires
Wei-Hu Zhang(张威虎), Fu-Chun Zhang(张富春), Wei-Bin Zhang(张伟斌), Shao-Lin Zhang(张绍林), Woochul Yang. Chin. Phys. B, 2017, 26(5): 057103.
[14] Hybrid crystals of cuprates and iron-based superconductors
Xia Dai(代霞), Cong-Cong Le(勒聪聪), Xian-Xin Wu(吴贤新), Jiang-Ping Hu(胡江平). Chin. Phys. B, 2016, 25(7): 077402.
[15] First-principles studies of electronic, optical, and mechanical properties of γ-Bi2Sn2O7
Chao-Hao Hu(胡朝浩), Xue-Hui Yin(殷学辉), Dian-Hui Wang(王殿辉), Yan Zhong(钟燕), Huai-Ying Zhou(周怀营), Guang-Hui Rao(饶光辉). Chin. Phys. B, 2016, 25(6): 067801.
No Suggested Reading articles found!