Please wait a minute...
Chin. Phys. B, 2018, Vol. 27(1): 017101    DOI: 10.1088/1674-1056/27/1/017101
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES Prev   Next  

Density functional theory analysis of electronic structure and optical properties of La-doped Cd2SnO4 transparent conducting oxide

Mei Tang(汤梅)1,2, Jia-Xiang Shang(尚家香)1, Yue Zhang(张跃)1
1 School of Materials Science & Engineering, Beihang University, Beijing 100191, China;
2 Journal Publishing Center of Tsinghua University Press, Beijing 100084, China
Abstract  The electronic structural, effective masses of carriers, and optical properties of pure and La-doped Cd2SnO4 are calculated by using the first-principles method based on the density functional theory. Using the GGA+U method, we show that Cd2SnO4 is a direct band-gap semiconductor with a band gap of 2.216 eV, the band gap decreases to 2.02 eV and the Fermi energy level moves to the conduction band after La doping. The density of states of Cd2SnO4 shows that the bottom of the conduction band is composed of Cd 5s, Sn 5s, and Sn 5p orbits, the top of the valence band is composed of Cd 4d and O 2p, and the La 5d orbital is hybridized with the O 2p orbital, which plays a key role at the conduction band bottom after La doping. The effective masses at the conduction band bottom of pure and La-doped Cd2SnO4 are 0.18m0 and 0.092m0, respectively, which indicates that the electrical conductivity of Cd2SnO4 after La doping is improved. The calculated optical properties show that the optical transmittance of La-doped Cd2SnO4 is 92%, the optical absorption edge is slightly blue shifted, and the optical band gap is increased to 3.263 eV. All the results indicate that the conductivity and optical transmittance of Cd2SnO4 can be improved by doping La.
Keywords:  transparent conducting oxides      electronic band structure      first-principle calculations      optical properties  
Received:  23 August 2017      Revised:  18 October 2017      Accepted manuscript online: 
PACS:  71.15.Mb (Density functional theory, local density approximation, gradient and other corrections)  
  71.20.-b (Electron density of states and band structure of crystalline solids)  
  78.20.-e (Optical properties of bulk materials and thin films)  
  42.50.Gy (Effects of atomic coherence on propagation, absorption, and Amplification of light; electromagnetically induced transparency and Absorption)  
Corresponding Authors:  Yue Zhang     E-mail:  zhangy@buaa.edu.cn

Cite this article: 

Mei Tang(汤梅), Jia-Xiang Shang(尚家香), Yue Zhang(张跃) Density functional theory analysis of electronic structure and optical properties of La-doped Cd2SnO4 transparent conducting oxide 2018 Chin. Phys. B 27 017101

[1] Badeker K 1907 Ann. Phys. 22 749
[2] Chopra K L, Major S and Pandya D K 1983 Thin Solid Films 102 1
[3] Niu M, Cheng D J, Huo L J and Shao X H 2012 J. Alloys Compd. 539 221
[4] Jeyadheepan K, Thamilselvan M, Kim K and Sanjeeviraja C 2015 J. Alloys Compd. 620 185
[5] Al-Baradi A M, El-Nahass M M, El-Raheem M M A, Atta A A and Hassanien A M 2014 Radiat. Phys. Chem. 103 227
[6] Kammler D R, Mason T O and Poeppelmeier K R 2000 Chem. Mater. 121 954
[7] Xu J, Huang S P and Wang Z S 2009 Solid State Commun. 149 527
[8] Krishnakumar V, Ramamurthi K, Kumaravel R and Santhakumar K 2009 Curr. Appl. Phys. 9 467
[9] Godines C D, Castanedo C T, Pérez R C, Delgado G T and Ángel O Z 2014 Sol. Energy Mater. Sol. Cells 128 150
[10] Sidorak A V, Ivanov V V and Shubin A A 2011 Mater. Sci. Appl. 2 1219
[11] Zhou W, Liu L J, Yuan M Y, Song Q G and Wu P 2012 Comput. Mater. Sci. 54 109
[12] Rezkallah T, Chemam F and Djabri I 2017 Chin. Phys. B 26 027102
[13] Wang S, Du Y L and Liao W H 2017 Chin. Phys. B 26 017806
[14] Farooq R, Mahmood T and Anwar A W 2016 Superlattice. Microst. 90 165
[15] Clark S J and Robertson J 2010 Phys. Rev. B 82 085208
[16] Deng J J, Liu B, Gu M, Liu X L, Huang S M and Ni C 2012 Acta Phys. Sin. 61 036105 (in Chinese)
[17] Du Y J, Chang B K, Zhang J J, Li B, and Wang X H 2012 Acta. Phys. Sin. 61 067101 (in Chinese)
[18] Liu D, Ren S Q, Ma X, Liu C, Wu L L, Li W, Zhang J Q and Feng L H. 2017 RSC Adv. 7 8295
[19] Dinesh S, Anandan M, Premkumar V K, Barathan S, Sivakumar G and Anandhan N 2016 Mater. Sci. Eng. B 214 37
[20] Velusamy P, Ramesh Babu R, Ramamurthi K, Elangovan E and Viegas J 2017 J. Alloy. Compd. 708 804
[21] Khatun M R, Hossain M M, Ali M A and Jahan N 2017 Chin. Phys. B 26 033102
[22] Slassi A 2015 Optik 126 4751
[23] Zhang X D, Guo M L and Liu C L 2008 Appl. Phys. Lett. 93 012103
[24] Slassi A 2015 Opt. Quant. Electron. 47 2465
[25] Wu H C, Peng Y C and Shen T P 2012 Materials 5 2088
[26] Zhang Y J, Yan J L and Zhao G 2010 Physica B 405 3899
[27] Zhang H J, Liu L and Zhou Z 2012 Phys. Chem. Chem. Phys. 14 1286
[28] Li X N, Gessert T A and Coutts T 2004 Appl. Surface Sci. 223 138
[29] Han J C, Gao W and Zhu J Q 2007 Phys. Rev. B 75 101
[30] Du J J and Li W 2012 Adv. Mater. Res. 476-478 1154
[31] Yoffe A D 2001 Adv. Phys. 50 1
[1] Optical and electrical properties of BaSnO3 and In2O3 mixed transparent conductive films deposited by filtered cathodic vacuum arc technique at room temperature
Jian-Ke Yao(姚建可) and Wen-Sen Zhong(钟文森). Chin. Phys. B, 2023, 32(1): 018101.
[2] Tunable electronic properties of GaS-SnS2 heterostructure by strain and electric field
Da-Hua Ren(任达华), Qiang Li(李强), Kai Qian(钱楷), and Xing-Yi Tan(谭兴毅). Chin. Phys. B, 2022, 31(4): 047102.
[3] Nonlinear optical properties in n-type quadruple δ-doped GaAs quantum wells
Humberto Noverola-Gamas, Luis Manuel Gaggero-Sager, and Outmane Oubram. Chin. Phys. B, 2022, 31(4): 044203.
[4] High-throughput computational material screening of the cycloalkane-based two-dimensional Dion—Jacobson halide perovskites for optoelectronics
Guoqi Zhao(赵国琪), Jiahao Xie(颉家豪), Kun Zhou(周琨), Bangyu Xing(邢邦昱), Xinjiang Wang(王新江), Fuyu Tian(田伏钰), Xin He(贺欣), and Lijun Zhang(张立军). Chin. Phys. B, 2022, 31(3): 037104.
[5] Determination of the surface states from the ultrafast electronic states in a thermoelectric material
Tongyao Wu(吴桐尧), Hongyuan Wang(王洪远), Yuanyuan Yang(杨媛媛), Shaofeng Duan(段绍峰), Chaozhi Huang(黄超之), Tianwei Tang(唐天威), Yanfeng Guo(郭艳峰), Weidong Luo(罗卫东), and Wentao Zhang(张文涛). Chin. Phys. B, 2022, 31(2): 027902.
[6] Tailoring the optical and magnetic properties of La-BaM hexaferrites by Ni substitution
Hafiz T. Ali, M. Ramzan, M Imran Arshad, Nicola A. Morley, M. Hassan Abbas, Mohammad Yusuf, Atta Ur Rehman, Khalid Mahmood, Adnan Ali, Nasir Amin, and M. Ajaz-un-Nabi. Chin. Phys. B, 2022, 31(2): 027502.
[7] Photoreflectance system based on vacuum ultraviolet laser at 177.3 nm
Wei-Xia Luo(罗伟霞), Xue-Lu Liu(刘雪璐), Xiang-Dong Luo(罗向东), Feng Yang(杨峰), Shen-Jin Zhang(张申金), Qin-Jun Peng(彭钦军), Zu-Yan Xu(许祖彦), and Ping-Heng Tan(谭平恒). Chin. Phys. B, 2022, 31(11): 110701.
[8] First-principles study of structural and opto-electronic characteristics of ultra-thin amorphous carbon films
Xiao-Yan Liu(刘晓艳), Lei Wang(王磊), and Yi Tong(童祎). Chin. Phys. B, 2022, 31(1): 016102.
[9] Analysis of properties of krypton ion-implanted Zn-polar ZnO thin films
Qing-Fen Jiang(姜清芬), Jie Lian(连洁), Min-Ju Ying(英敏菊), Ming-Yang Wei(魏铭洋), Chen-Lin Wang(王宸琳), and Yu Zhang(张裕). Chin. Phys. B, 2021, 30(9): 097801.
[10] Stability of liquid crystal systems doped with γ-Fe2O3 nanoparticles
Xu Zhang(张旭), Ningning Liu(刘宁宁), Zongyuan Tang(唐宗元), Yingning Miao(缪应宁), Xiangshen Meng(孟祥申), Zhenghong He(何正红), Jian Li(李建), Minglei Cai(蔡明雷), Tongzhou Zhao(赵桐州), Changyong Yang(杨长勇), Hongyu Xing(邢红玉), and Wenjiang Ye(叶文江). Chin. Phys. B, 2021, 30(9): 096101.
[11] Electronic structures of vacancies in Co3Sn2S2
Yuxiang Gao(高于翔), Xin Jin(金鑫), Yixuan Gao(高艺璇), Yu-Yang Zhang(张余洋), and Shixuan Du(杜世萱). Chin. Phys. B, 2021, 30(7): 077102.
[12] Strain-tunable electronic and optical properties of h-BN/BC3 heterostructure with enhanced electron mobility
Zhao-Yong Jiao(焦照勇), Yi-Ran Wang(王怡然), Yong-Liang Guo(郭永亮), and Shu-Hong Ma(马淑红). Chin. Phys. B, 2021, 30(7): 076801.
[13] Low-dimensional phases engineering for improving the emission efficiency and stability of quasi-2D perovskite films
Yue Wang(王月), Zhuang-Zhuang Ma(马壮壮), Ying Li(李营), Fei Zhang(张飞), Xu Chen(陈旭), and Zhi-Feng Shi (史志锋). Chin. Phys. B, 2021, 30(6): 067802.
[14] Effects of substitution of group-V atoms for carbon or silicon atoms on optical properties of silicon carbide nanotubes
Ying-Ying Yang(杨莹莹), Pei Gong(龚裴), Wan-Duo Ma(马婉铎), Rui Hao(郝锐), and Xiao-Yong Fang(房晓勇). Chin. Phys. B, 2021, 30(6): 067803.
[15] Gas sensor using gold doped copper oxide nanostructured thin films as modified cladding fiber
Hussein T. Salloom, Rushdi I. Jasim, Nadir Fadhil Habubi, Sami Salman Chiad, M Jadan, and Jihad S. Addasi. Chin. Phys. B, 2021, 30(6): 068505.
No Suggested Reading articles found!