Please wait a minute...
Chin. Phys. B, 2017, Vol. 26(8): 087301    DOI: 10.1088/1674-1056/26/8/087301
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES Prev   Next  

Modulating the properties of monolayer C2N: A promising metal-free photocatalyst for water splitting

Song Yu(俞松), Yong-Chao Rao(饶勇超), Xiang-Mei Duan(段香梅)
Department of Physics, Faculty of Science, Ningbo University, Ningbo 315211, China
Abstract  

Photocatalytic water splitting has gained increasing attention, since it utilizes renewable resources, such as water and solar energy, to produce hydrogen. Using the first-principles density functional theory, we investigate the properties of the single layer C2N which was successfully synthesized. We reveal that monolayer C2N has a substantial direct band gap of 2.45 eV. To regulate its band gap, four different nonmetal elements (B, O, P, and S) on the cation and anion sites are considered. Among them, B-doped N site is the most effective one, with the lowest formation energy and a band gap of 2.01 eV. P-doped N site is the next, with a band gap of 2.08 eV, though its formation energy is higher. The band alignments with respect to the water redox levels show that, for these two dopings, the thermodynamic criterion for the overall water splitting is satisfied. We therefore predict that B- or P-doped C2N, with an appropriate band gap and an optimal band-edge position, would be a promising photocatalyst for visible-light water splitting.

Keywords:  C2N      metal-free photocatalyst      water splitting      doping      first-principle calculation  
Received:  10 April 2017      Revised:  08 May 2017      Accepted manuscript online: 
PACS:  73.20.At (Surface states, band structure, electron density of states)  
  71.15.Mb (Density functional theory, local density approximation, gradient and other corrections)  
  71.20.Nr (Semiconductor compounds)  
Fund: 

Project supported by the National Natural Science Foundation of China (Grant No. 11574167).

Corresponding Authors:  Xiang-Mei Duan     E-mail:  duanxiangmei@nbu.edu.cn
About author:  0.1088/1674-1056/26/8/

Cite this article: 

Song Yu(俞松), Yong-Chao Rao(饶勇超), Xiang-Mei Duan(段香梅) Modulating the properties of monolayer C2N: A promising metal-free photocatalyst for water splitting 2017 Chin. Phys. B 26 087301

[1] Lewis N S and Nocera D G 2006 Proc. Natl. Acad. Sci. 103 15729
[2] Züttel A, Remhof A, Borgschulte A and Friedrichs O 2010 Philosophical Transactions 368 3329
[3] Gregoirepadró C E 1998 Energy and Fuels 12 337
[4] Dinga G P 1988 Int. J. Hydrogen Energy 14 777
[5] Navarro Yerga R M 2009 Chemsuschem 2 471
[6] Bard A J and Fox M A 1995 Acc. Chem. Res. 28 141
[7] Fujishima A and Honda K 1972 Nature 238 37
[8] Yamaguti K and Sato S 1985 J. Chem. Soc. Faraday Trans. 81 1237
[9] Haruhiko K, Nobuo S, Hiroshi N, Hisayoshi K, Yoshiki S, and Yasunobu I 2007 J. Phys. Chem. C 111 439
[10] Katz J E, Gingrich T R, Santori E A and Lewis N S 2008 Energy Environ. Sci. 2 103
[11] Zhao Z G and Miyauchi M 2008 Angewandte Chemie 47 7051
[12] Cui Z, Zeng D, Tang T, Liu J and Xie C 2010 Journal of Hazardous Materials 183 211
[13] Maschmeyer T and Che M 2010 Angewandte Chemie 49 1536
[14] Xiang Q, Yu J and Jaroniec M 2012 Chem. Soc. Rev. 41 782
[15] Balzani V, Credi A and Venturi M 2008 Chemsuschem 1 26
[16] Ran J, Zhang J, Yu J, Jaroniec M and Qiao S Z 2014 Chem. Soc. Rev. 43 7787
[17] Molinari R, Marino T and Argurio P 2014 Int. J. Hydrogen Energy 39 7247
[18] Wang X, Maeda K, Thomas A, Takanabe K, Xin G, Carlsson J M, Domen K and Antonietti M 2009 Nat. Mater. 8 76
[19] Zhang J, Chen X, Takanabe K, Maeda K, Domen K, Epping J D, Fu X, Antonietti M and Wang X 2010 Angewandte Chemie 49 441
[20] Zhang Y, Mori T, Li N and Ye J 2011 Energy Environ. Sci. 4 4517
[21] Ma X, Lv Y, Xu J, Liu Y, Zhang R and Zhu Y 2012 J. Phys. Chem. C 116 23485
[22] Zheng Y, Liu J, Liang J, Jaroniec M and Qiao S Z 2012 Energy Environ. Sci. 5 6717
[23] Pan H, Zhang Y W, Shenoy V B and Gao H 2011 Acs Catalysis 1 99
[24] Wang J, Guan Z, Huang J, Li Q and Yang J 2014 J. Mater. Chem. A 2 7960
[25] Mahmood J 2015 Nat. Commun. 6 6486
[26] Blöchl P E 1994 Phys. Rev. B 50 17953
[27] Kresse G and Joubert D 1999 Phys. Rev. B 59 1758
[28] Kresse G and Furthmüller J 1996 Phys. Rev. B 54 11169
[29] Kresse G and Furthmüller J 1996 Comput. Mater. Sci. 6 15
[30] Perdew J P, Burke K and Ernzerhof M 1996 Phys. Rev. Lett. 77 3865
[31] Heyd J, Scuseria G E and Ernzerhof M 2003 J. Chem. Phys. 118 8207
[32] Momma K and Izumi F 2001 J. Appl. Crystallography 41 653
[33] Srinivasu K, Modak B, and Ghosh S K 2014 Phys. Rev. Lett. 118 26479
[34] Modak B, Srinivasu K and Ghosh S K 2014 Phys. Chem. Chem. Phys. 16 17116
[35] Modak B, Srinivasu K and Ghosh S K 2014 Rsc Adv. 4 45703
[36] Liu G, Niu P, Sun C, Smith S C, Chen Z, Lu G Q and Cheng H M 2010 J. Am. Chem. Soc. 132 11642
[37] Hu S, Ma L, You J, Li F, Fan Z, Wang F, Liu D and Gui J 2014 Rsc Adv. 4 21657
[38] Choi C H, Park S H and Woo S I 2012 ACS Nano 6 7091
[1] Suppression and compensation effect of oxygen on the behavior of heavily boron-doped diamond films
Li-Cai Hao(郝礼才), Zi-Ang Chen(陈子昂), Dong-Yang Liu(刘东阳), Wei-Kang Zhao(赵伟康),Ming Zhang(张鸣), Kun Tang(汤琨), Shun-Ming Zhu(朱顺明), Jian-Dong Ye(叶建东),Rong Zhang(张荣), You-Dou Zheng(郑有炓), and Shu-Lin Gu(顾书林). Chin. Phys. B, 2023, 32(3): 038101.
[2] Blue phosphorene/MoSi2N4 van der Waals type-II heterostructure: Highly efficient bifunctional materials for photocatalytics and photovoltaics
Xiaohua Li(李晓华), Baoji Wang(王宝基), and Sanhuang Ke(柯三黄). Chin. Phys. B, 2023, 32(2): 027104.
[3] A novel monoclinic phase and electrically tunable magnetism of van der Waals layered magnet CrTe2
Qidi Ren(任启迪), Kang Lai(赖康), Jiahao Chen(陈家浩), Xiaoxiang Yu(余晓翔), and Jiayu Dai(戴佳钰). Chin. Phys. B, 2023, 32(2): 027201.
[4] Bismuth doping enhanced tunability of strain-controlled magnetic anisotropy in epitaxial Y3Fe5O12(111) films
Yunpeng Jia(贾云鹏), Zhengguo Liang(梁正国), Haolin Pan(潘昊霖), Qing Wang(王庆), Qiming Lv(吕崎鸣), Yifei Yan(严轶非), Feng Jin(金锋), Dazhi Hou(侯达之), Lingfei Wang(王凌飞), and Wenbin Wu(吴文彬). Chin. Phys. B, 2023, 32(2): 027501.
[5] Pressure-induced stable structures and physical properties of Sr-Ge system
Shuai Han(韩帅), Shuai Duan(段帅), Yun-Xian Liu(刘云仙), Chao Wang(王超), Xin Chen(陈欣), Hai-Rui Sun(孙海瑞), and Xiao-Bing Liu(刘晓兵). Chin. Phys. B, 2023, 32(1): 016101.
[6] High-quality CdS quantum dots sensitized ZnO nanotube array films for superior photoelectrochemical performance
Qian-Qian Gong(宫倩倩), Yun-Long Zhao(赵云龙), Qi Zhang(张奇), Chun-Yong Hu(胡春永), Teng-Fei Liu(刘腾飞), Hai-Feng Zhang(张海峰), Guang-Chao Yin(尹广超), and Mei-Ling Sun(孙美玲). Chin. Phys. B, 2022, 31(9): 098103.
[7] Theoretical study of M6X2 and M6XX' structure (M = Au, Ag; X,X' = S, Se): Electronic and optical properties, ability of photocatalytic water splitting, and tunable properties under biaxial strain
Jiaqi Li(李嘉琪), Xinlu Cheng(程新路), and Hong Zhang(张红). Chin. Phys. B, 2022, 31(9): 097101.
[8] Broadband chirped InAs quantum-dot superluminescent diodes with a small spectral dip of 0.2 dB
Hong Wang(王虹), Zunren Lv(吕尊仁), Shuai Wang(汪帅), Haomiao Wang(王浩淼), Hongyu Chai(柴宏宇), Xiaoguang Yang(杨晓光), Lei Meng(孟磊), Chen Ji(吉晨), and Tao Yang(杨涛). Chin. Phys. B, 2022, 31(9): 098104.
[9] Slight Co-doping tuned magnetic and electric properties on cubic BaFeO3 single crystal
Shijun Qin(覃湜俊), Bowen Zhou(周博文), Zhehong Liu(刘哲宏), Xubin Ye(叶旭斌), Xueqiang Zhang(张雪强), Zhao Pan(潘昭), and Youwen Long(龙有文). Chin. Phys. B, 2022, 31(9): 097503.
[10] Designing a P2-type cathode material with Li in both Na and transition metal layers for Na-ion batteries
Jianxiang Gao(高健翔), Kai Sun(孙凯), Hao Guo(郭浩), Zhengyao Li(李正耀), Jianlin Wang(王建林), Xiaobai Ma(马小柏), Xuedong Bai(白雪东), and Dongfeng Chen(陈东风). Chin. Phys. B, 2022, 31(9): 098201.
[11] Improving efficiency of inverted perovskite solar cells via ethanolamine-doped PEDOT:PSS as hole transport layer
Zi-Jun Wang(王子君), Jia-Wen Li(李嘉文), Da-Yong Zhang(张大勇), Gen-Jie Yang(杨根杰), and Jun-Sheng Yu(于军胜). Chin. Phys. B, 2022, 31(8): 087802.
[12] Improved performance of MoS2 FET by in situ NH3 doping in ALD Al2O3 dielectric
Xiaoting Sun(孙小婷), Yadong Zhang(张亚东), Kunpeng Jia(贾昆鹏), Guoliang Tian(田国良), Jiahan Yu(余嘉晗), Jinjuan Xiang(项金娟), Ruixia Yang(杨瑞霞), Zhenhua Wu(吴振华), and Huaxiang Yin(殷华湘). Chin. Phys. B, 2022, 31(7): 077701.
[13] Surface electron doping induced double gap opening in Td-WTe2
Qi-Yuan Li(李启远), Yang-Yang Lv(吕洋洋), Yong-Jie Xu(徐永杰), Li Zhu(朱立), Wei-Min Zhao(赵伟民), Yanbin Chen(陈延彬), and Shao-Chun Li(李绍春). Chin. Phys. B, 2022, 31(6): 066802.
[14] Experimental observation of pseudogap in a modulation-doped Mott insulator: Sn/Si(111)-(√30×√30)R30°
Yan-Ling Xiong(熊艳翎), Jia-Qi Guan(关佳其), Rui-Feng Wang(汪瑞峰), Can-Li Song(宋灿立), Xu-Cun Ma(马旭村), and Qi-Kun Xue(薛其坤). Chin. Phys. B, 2022, 31(6): 067401.
[15] MOS-based model of four-transistor CMOS image sensor pixels for photoelectric simulation
Bing Zhang(张冰), Congzhen Hu(胡从振), Youze Xin(辛有泽), Yaoxin Li(李垚鑫), Zhuoqi Guo(郭卓奇), Zhongming Xue(薛仲明), Li Dong(董力), Shanzhe Yu(于善哲), Xiaofei Wang(王晓飞), Shuyu Lei(雷述宇), and Li Geng(耿莉). Chin. Phys. B, 2022, 31(5): 058503.
No Suggested Reading articles found!