CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES |
Prev
Next
|
|
|
Electronic structures of vacancies in Co3Sn2S2 |
Yuxiang Gao(高于翔)1, Xin Jin(金鑫)1, Yixuan Gao(高艺璇)1, Yu-Yang Zhang(张余洋)1,2,†, and Shixuan Du(杜世萱)1,2,3,4,‡ |
1 Institute of Physics and University of Chinese Academy of Sciences, Chinese Academy of Sciences, Beijing 100190, China; 2 CAS Center for Excellence in Topological Quantum Computation, University of Chinese Academy of Sciences, Beijing 100190, China; 3 Beijing National Center for Condensed Matter Physics, Beijing 100190, China; 4 Songshan Lake Materials Laboratory, Dongguan 523808, China |
|
|
Abstract Co3Sn2S2 has attracted a lot of attention for its multiple novel physical properties, including topological nontrivial surface states, anomalous Hall effect, and anomalous Nernst effect. Vacancies, which play important roles in functional materials, have attracted increasing research attention. In this paper, by using density functional theory calculations, we first obtain band structures and magnetic moments of Co3Sn2S2 with exchange-correlation functionals at different levels. It is found that the generalized gradient approximation gives the positions of Weyl points consistent with experiments in bulk Co3Sn2S2. We then investigate the electronic structures of defects on surfaces with S and Sn terminations which have been observed in experiments. The results show that the single sulfur vacancy on the S-terminated surface introduces localized bond states inside the bandgap near the Fermi level. For di- and tri-sulfur vacancies, the localized defect states hybridize with neighboring ones, forming bonding states as well as anti-bonding states. The Sn vacancy on the Sn-terminated surface also introduces localized bond states, which are merged with the valence bands. These results provide a reference for future experimental investigations of vacancies in Co3Sn2S2.
|
Received: 24 February 2021
Revised: 17 April 2021
Accepted manuscript online: 21 April 2021
|
PACS:
|
71.15.Mb
|
(Density functional theory, local density approximation, gradient and other corrections)
|
|
61.72.jd
|
(Vacancies)
|
|
71.55.Ak
|
(Metals, semimetals, and alloys)
|
|
71.70.-d
|
(Level splitting and interactions)
|
|
Fund: Project supported by the National Key R&D Program of China (Grant Nos. 2019YFA0308500 and 2018YFA0305800), the National Natural Science Foundation of China (Grant Nos. 51922011 and 61888102), Strategic Priority Research Program of the Chinese Academy of Sciences (Grant Nos. XDB30000000 and XDB28000000), and the Fundamental Research Funds for the Central Universities, China. |
Corresponding Authors:
Yu-Yang Zhang, Shixuan Du
E-mail: zhangyuyang@ucas.ac.cn;sxdu@iphy.ac.cn
|
Cite this article:
Yuxiang Gao(高于翔), Xin Jin(金鑫), Yixuan Gao(高艺璇), Yu-Yang Zhang(张余洋), and Shixuan Du(杜世萱) Electronic structures of vacancies in Co3Sn2S2 2021 Chin. Phys. B 30 077102
|
[1] Liu D F, Liang A J, Liu E K, Xu Q N, Li Y W, Chen C, Pei D, Shi W J, Mo S K, Dudin P, Kim T, Cacho C, Li G, Sun Y, Yang L X, Liu Z K, Parkin S S P, Felser C and Chen Y L 2019 Science 365 1282 [2] Liu C, Shen J L, Gao J C, Yi C J, Liu D, Xie T, Yang L, Danilkin S, Deng G C, Wang W H, Li S L, Shi Y G, Weng H M, Liu E K and Luo H Q 2021 Sci. China-Phys. Mech. Astron. 64 217062 [3] Shvetsov O O, Esin V D, Barash Y S, Timonina A V, Kolesnikov N N and Deviatov E V 2020 Phys. Rev. B 101 035304 [4] Howard S, Jiao L, Wang Z Y, Vir P, Shekhar C, Felser C, Hughes T and Madhavan V 2019 arXiv:1910.11205 [5] Fujiwara K, Ikeda J, Shiogai J, Seki T, Takanashi K and Tsukazaki A 2019 Jpn. J. Appl. Phys. 58 050912 [6] Shi Q, Zhang X, Yang E, Yan J, Yu X Y, Sun C, Li S and Chen Z W 2018 Results Phys. 11 1004 [7] Mangelis P, Vaqueiro P, Jumas J C, da Silva I, Smith R I and Powell A V 2017 J. Solid State Chem. 251 204 [8] Lv B Q, Xu N, Weng H M, Ma J Z, Richard P, Huang X C, Zhao L X, Chen G F, Matt C E, Bisti F, Strocov V N, Mesot J, Fang Z, Dai X, Qian T, Shi M and Ding H 2015 Nat. Phys. 11 724 [9] Xu S Y, Belopolski I, Alidoust N, et al. 2015 Science 349 613 [10] Weng H M, Fang C, Fang Z, Bernevig B A and Dai X 2015 Phys. Rev. X 5 011029 [11] Vaqueiro P and Sobany G G 2009 Solid State Sci. 11 513 [12] Kassem M A, Tabata Y, Waki T and Nakamura H 2017 Phys. Rev. B 96 014429 [13] Yan W N, Zhang X, Shi Q, Yu X Y, Zhang Z Q, Wang Q, Li S and Lei H C 2018 Solid State Commun. 281 57 [14] Sugawara A, Akashi T, Kassem M, Tabata Y, Waki T and Nakamura H 2019 Phys. Rev. Mater. 3 104421 [15] Morali N, Batabyal R, Nag P K, Liu E K, Xu Q N, Sun Y, Yan B H, Felser C, Avraham N and Beidenkopf H 2019 Science 365 1286 [16] Xu Q N, Liu E K, Shi W J, Muechler L, Gayles J, Felser C and Sun Y 2018 Phys. Rev. B 97 235416 [17] Jiao L, Xu Q N, Cheon Y, Sun Y, Felser C, Liu E K and Wirth S 2019 Phys. Rev. B 99 245158 [18] Li G W, Xu Q N, Shi W J, Fu C G, Jiao L, Kamminga M E, Yu M Q, Tüysüz H, Kumar N, Süß V, Saha R, Srivastava A K, Wirth S, Auffermann G, Gooth J, Parkin S, Sun Y, Liu E K and Felser C 2019 Sci. Adv. 5 eaaw9867 [19] Yang R, Zhang T, Zhou L Q, Dai Y M, Liao Z Y, Weng H M and Qiu X G 2020 Phys. Rev. Lett. 124 077403 [20] Liu E K, Sun Y, Kumar N, et al. 2018 Nat. Phys. 14 1125 [21] Wang Q, Xu Y F, Lou R, Liu Z H, Li M, Huang Y B, Shen D W, Weng H M, Wang S C and Lei H C 2018 Nat. Commun. 9 3681 [22] Chen X L, Wang M Y, Gu C C, Wang S Y, Zhou Y H, An C, Zhou Y, Zhang B W, Chen C H, Yuan Y F, Qi M Y, Zhang L L, Zhou H D, Zhou J H, Yao Y G and Yang Z R 2019 Phys. Rev. B 100 165145 [23] Geishendorf K, Schlitz R, Vir P, Shekhar C, Felser C, Nielsch K, Goennenwein S T B and Thomas A 2019 Appl. Phys. Lett. 114 092403 [24] Guguchia Z, Verezhak J A T, Gawryluk D J, et al. 2020 Nat. Commun. 11 559 [25] Yang S Y, Noky J, Gayles J, Dejene F K, Sun Y, Dörr M, Skourski Y, Felser C, Ali M N, Liu E K and Parkin S S P 2020 Nano Lett. 20 7860 [26] Ding L C, Koo J, Xu L C, Li X K, Lu X F, Zhao L X, Wang Q, Yin Q W, Lei H C, Yan B H, Zhu Z W and Behnia K 2019 Phys. Rev. X 9 041061 [27] Geishendorf K, Vir P, Shekhar C, Felser C, Facio J I, van den Brink J, Nielsch K, Thomas A and Goennenwein S T B 2020 Nano Lett. 20 300 [28] Guin S N, Vir P, Zhang Y, Kumar N, Watzman S J, Fu C G, Liu E K, Manna K, Schnelle W, Gooth J, Shekhar C, Sun Y and Felser C 2019 Adv. Mater. 31 1806622 [29] Qiao Q, Zhang Y Y, Contreras-Guerrero R, Droopad R, Pantelides S T, Pennycook S J, Ogut S and Klie R F 2015 Appl. Phys. Lett. 107 201604 [30] Zhou W, Zhang Y Y, Chen J Y, Li D D, Zhou J D, Liu Z, Chisholm M F, Pantelides S T and Loh K P 2018 Sci. Adv. 4 eaap9096 [31] Xu H K and Ouyang G 2020 Chin. Phys. B 29 37302 [32] Reshchikov M A and Morkoc H 2005 J. Appl. Phys. 97 95 [33] Li L, Yang L A, Zhou X W, Zhang J C and Hao Y 2013 Chin. Phys. B 22 87104 [34] Zhao X X, Fu D Y, Ding Z J, Zhang Y Y, Wan D Y, Tan S J R, Chen Z X, Leng K, Dan J D, Fu W, Geng D C, Song P, Du Y H, Venkatesan T, Pantelides S T, Pennycook S J, Zhou W and Loh K P 2018 Nano Lett. 18 482 [35] Yang S Z, Gong Y J, Manchanda P, Zhang Y Y, Ye G L, Chen S M,Song L, Pantelides S T, Ajayan P M, Chisholm M F and Zhou W 2018 Adv. Mater. 30 180347 [36] Gao T, Kumar A, Shang Z, Duan X, Wang H, Wang S, Ji S, Yan D, Luo L, Liu W and Sun X 2019 Chin. Chem. Lett. 30 2274 [37] Hu K, Ming C, Liu Y, Zheng C, Zhang S, Wang D, Zhao W and Huang F 2020 Chin. Chem. Lett. 31 2809 [38] Yin J X, Shumiya N, Jiang Y X, et al. 2020 Nat. Commun. 11 4415 [39] Xing Y Q, Shen J L, Chen H, et al. 2020 Nat. Commun. 11 5613 [40] Kresse G and Furthmüller J 1996 Comput. Mater. Sci. 6 15 [41] Kresse G and Furthmüller J 1996 Phys. Rev. B 54 11169 [42] Blöchl P E 1994 Phys. Rev. B 50 17953 [43] Perdew J P, Burke K and Ernzerhof M 1996 Phys. Rev. Lett. 77 3865 [44] Becke A D and Johnson E R 2006 J. Chem. Phys. 124 221101 [45] Tran F and Blaha P 2009 Phys. Rev. Lett. 102 226401 [46] Krukau A V, Vydrov O A, Izmaylov A F and Scuseria G E 2006 J. Chem. Phys. 125 224106 [47] Monkhorst H J and Pack J D 1976 Phys. Rev. B 13 5188 [48] Li Q, Rellán-Piñeiro M, Almora-Barrios N, Garcia-Ratés M, Remediakis I N and López N 2017 Nanoscale 9 13089 [49] Stekolnikov A A, Furthmuller J and Bechstedt F 2002 Phys. Rev. B 65 115318 [50] Wang W, Dai S Y, Li X D, Yang J R, Srolovitz D J and Zheng Q S 2015 Nat. Commun. 6 7853 [51] Miletto, Granozio F and di Uccio U S 1997 J. Cryst. Growth 174 409 [52] Yin J X, Zhang S S, Chang G Q, et al. 2019 Nat. Phys. 15 443 [53] Hong J H, Hu Z X, Probert M, Li K, Lv D H, Yang X N, Gu L, Mao N N, Feng Q L, Xie L M, Zhang J, Wu D Z, Zhang Z Y, Jin C H, Ji W, Zhang X X, Yuan J and Zhang Z 2015 Nat. Commun. 6 6293 [54] Li W F, Fang C M and van Huis M A 2016 Phys. Rev. B 94 195425 |
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|