Please wait a minute...
Chin. Phys. B, 2016, Vol. 25(7): 077403    DOI: 10.1088/1674-1056/25/7/077403
Special Issue: Virtual Special Topic — High temperature superconductivity
RAPID COMMUNICATION Prev   Next  

Multiband nodeless superconductivity near the charge-density-wave quantum critical point in ZrTe3-xSex

Shan Cui(崔珊)1, Lan-Po He(何兰坡)1, Xiao-Chen Hong(洪晓晨)1, Xiang-De Zhu(朱相德)2,4, Cedomir Petrovic4, Shi-Yan Li(李世燕)1,3
1 State Key Laboratory of Surface Physics, Department of Physics, and Laboratory of Advanced Materials, Fudan University, Shanghai 200433, China;
2 High Magnetic Field Laboratory, Chinese Academy of Sciences and University of Science and Technology of China, Hefei 230031, China;
3 Collaborative Innovation Center of Advanced Microstructures, Nanjing 210093, China;
4 Condensed Matter Physics and Materials Science Department, Brookhaven National Laboratory, Upton, New York 11973, USA
Abstract  

It was found that selenium doping can suppress the charge-density-wave (CDW) order and induce bulk superconductivity in ZrTe3. The observed superconducting dome suggests the existence of a CDW quantum critical point (QCP) in ZrTe3-xSex near x ≈ 0.04. To elucidate the superconducting state near the CDW QCP, we measure the thermal conductivity of two ZrTe3-xSex single crystals (x = 0.044 and 0.051) down to 80 mK. For both samples, the residual linear term κ0/T at zero field is negligible, which is a clear evidence for nodeless superconducting gap. Furthermore, the field dependence of κ0/T manifests a multigap behavior. These results demonstrate multiple nodeless superconducting gaps in ZrTe3-xSex, which indicates conventional superconductivity despite of the existence of a CDW QCP.

Keywords:  superconductivity      charge-density-wave order      thermal transport measurement      gap structure  
Received:  19 May 2016      Accepted manuscript online: 
PACS:  74.25.fc (Electric and thermal conductivity)  
  74.40.Kb (Quantum critical phenomena)  
  74.25.Jb (Electronic structure (photoemission, etc.))  
  74.25.Op (Mixed states, critical fields, and surface sheaths)  
Fund: 

Project supported by the National Basic Research Program of China (Grant Nos. 2012CB821402 and 2015CB921401), the National Natural Science Foundation of China (Grant Nos. 91421101, 11422429, and 11204312), the Program for Professor of Special Appointment (Eastern Scholar) at Shanghai Institutions of Higher Learning, China, and STCSM of China (Grant No. 15XD1500200). Work at Brookhaven National Laboratory was supported by the US DOE under Contract No. DESC00112704.

Corresponding Authors:  Shi-Yan Li     E-mail:  shiyan_li@fudan.edu.cn

Cite this article: 

Shan Cui(崔珊), Lan-Po He(何兰坡), Xiao-Chen Hong(洪晓晨), Xiang-De Zhu(朱相德), Cedomir Petrovic, Shi-Yan Li(李世燕) Multiband nodeless superconductivity near the charge-density-wave quantum critical point in ZrTe3-xSex 2016 Chin. Phys. B 25 077403

[1] Wilson J A, Di Salvo F J and Mahajan S 1975 Adv. Phys. 24 117
[2] Kim S J, Park S J, Jeon I C, Kim C H, Pyun C H and Yee K A 1997 J. Phys. Chem. Solids 58 659
[3] Di Salvo F J, Moncton D E and Waszczak J V 1976 Phys. Rev. B 14 4321
[4] Boswell F and Bennett J C 1996 Mater. Res. Bull. 31 1083
[5] Morosan E, Zandbergen H W, Dennis B S, Bos J W G, Onose Y, Klimczuk T, Ramirez A P, Ong N P and Cava R J 2006 Nat. Phys. 2 544
[6] Kusmartseva A F, Sipos B, Berger H, Forro L and Tutis E 2009 Phys. Rev. Lett. 103 236401
[7] Sipos B, Kusmartseva A F, Akrap A, Berger H, Forro L and Tutis E 2008 Nat. Mater. 7 960
[8] Hoesch M, Garbarino G, Battaglia C, Aebi P and Berger H 2016 Phys. Rev. B 93 125102
[9] Norman M R 2011 Science 332 196
[10] Yamaya K, Takayanagi S and Tanda S 2012 Phys. Rev. B 85 184513
[11] Furuseth S, Brattas L and Kjekshus A 1975 Acta Chem. Scand. A 29 623
[12] Eaglesham D J, Steeds J W and Wilson J A 1984 J. Phys. C: Solid State Phys. 17 L697
[13] Zhu X D, Lei H C and Petrovic C 2011 Phys. Rev. Lett. 106 246404
[14] Lei H C, Zhu X D and Petrovic C 2011 Europhys. Lett. 95 17011
[15] Yamaya K, Yoneda M, Yasuzuka S, Okajima Y and Tanda S 2002 J. Phys.: Condens. Matter 14 10767
[16] Zhu X Y, Lv B, Wei F Y, Xue Y Y, Lorenz B, Deng L Z, Sun Y Y and Chu C W 2013 Phys. Rev. B 87 024508
[17] Zhu X D, Ning W, Li L J, Ling L S, Zhang R R, Wang K F, Liu Y, Pi L, Ma Y C, Du H F, Tian M L, Sun Y P, Petrovic C and Zhang Y H 2016 Sci. Rep. accepted
[18] Shakeripour H, Petrovic C and Taillefer L 2009 New J. Phys. 11 055065
[19] Sutherland M, Hawthorn D G, Hill R W, Ronning F, Wakimoto S, Zhang H, Proust C, Boaknin E, Lupien C and Taillefer L 2003 Phys. Rev. B 67 174520
[20] Li S Y, Bonnemaison J B, Payeur A, Fournier P, Wang C H, Chen X H and Taillefer L 2008 Phys. Rev. B 77 134501
[21] Proust C, Boaknin E, Hill R W, Taillefer L and Mackenzie A P 2002 Phys. Rev. Lett. 89 147003
[22] Suzuki M, Tanatar M A, Kikugawa N, Mao Z Q, Maeno Y and Ishiguro T 2002 Phys. Rev. Lett. 88 227004
[23] Lowell J and Sousa J B 1970 J. Low. Temp. Phys. 3 65
[24] Boaknin E, Tanatar M A, Paglione J, Hawthorn D, Ronning F, Hill R W, Sutherland M, Taillefer L, Sonier J, Hayden S M and Brill J W 2003 Phys. Rev. Lett. 90 117003
[25] Scalapino D J, Loh E and Hirsch J E 1987 Phys. Rev. B 35 6694
[26] Merino J and McKenzie R H 2001 Phys. Rev. Lett. 87 237002
[27] Li S Y, Wu G, Chen X H and Taillefer L 2007 Phys. Rev. Lett. 99 107001
[1] Enhanced topological superconductivity in an asymmetrical planar Josephson junction
Erhu Zhang(张二虎) and Yu Zhang(张钰). Chin. Phys. B, 2023, 32(4): 040307.
[2] Superconductivity in epitaxially grown LaVO3/KTaO3(111) heterostructures
Yuan Liu(刘源), Zhongran Liu(刘中然), Meng Zhang(张蒙), Yanqiu Sun(孙艳秋), He Tian(田鹤), and Yanwu Xie(谢燕武). Chin. Phys. B, 2023, 32(3): 037305.
[3] Pressure-induced stable structures and physical properties of Sr-Ge system
Shuai Han(韩帅), Shuai Duan(段帅), Yun-Xian Liu(刘云仙), Chao Wang(王超), Xin Chen(陈欣), Hai-Rui Sun(孙海瑞), and Xiao-Bing Liu(刘晓兵). Chin. Phys. B, 2023, 32(1): 016101.
[4] Superconducting properties of the C15-type Laves phase ZrIr2 with an Ir-based kagome lattice
Qing-Song Yang(杨清松), Bin-Bin Ruan(阮彬彬), Meng-Hu Zhou(周孟虎), Ya-Dong Gu(谷亚东), Ming-Wei Ma(马明伟), Gen-Fu Chen(陈根富), and Zhi-An Ren(任治安). Chin. Phys. B, 2023, 32(1): 017402.
[5] Superconductivity and unconventional density waves in vanadium-based kagome materials AV3Sb5
Hui Chen(陈辉), Bin Hu(胡彬), Yuhan Ye(耶郁晗), Haitao Yang(杨海涛), and Hong-Jun Gao(高鸿钧). Chin. Phys. B, 2022, 31(9): 097405.
[6] Mottness, phase string, and high-Tc superconductivity
Jing-Yu Zhao(赵靖宇) and Zheng-Yu Weng(翁征宇). Chin. Phys. B, 2022, 31(8): 087104.
[7] Structural evolution and molecular dissociation of H2S under high pressures
Wen-Ji Shen(沈文吉), Tian-Xiao Liang(梁天笑), Zhao Liu(刘召), Xin Wang(王鑫), De-Fang Duan(段德芳), Hong-Yu Yu(于洪雨), and Tian Cui(崔田). Chin. Phys. B, 2022, 31(7): 076102.
[8] High-pressure study of topological semimetals XCd2Sb2 (X = Eu and Yb)
Chuchu Zhu(朱楚楚), Hao Su(苏豪), Erjian Cheng(程二建), Lin Guo(郭琳), Binglin Pan(泮炳霖), Yeyu Huang(黄烨煜), Jiamin Ni(倪佳敏), Yanfeng Guo(郭艳峰), Xiaofan Yang(杨小帆), and Shiyan Li(李世燕). Chin. Phys. B, 2022, 31(7): 076201.
[9] Surface electron doping induced double gap opening in Td-WTe2
Qi-Yuan Li(李启远), Yang-Yang Lv(吕洋洋), Yong-Jie Xu(徐永杰), Li Zhu(朱立), Wei-Min Zhao(赵伟民), Yanbin Chen(陈延彬), and Shao-Chun Li(李绍春). Chin. Phys. B, 2022, 31(6): 066802.
[10] Superconductivity in CuIr2-xAlxTe4 telluride chalcogenides
Dong Yan(严冬), Lingyong Zeng(曾令勇), Yijie Zeng(曾宜杰), Yishi Lin(林一石), Junjie Yin(殷俊杰), Meng Wang(王猛), Yihua Wang(王熠华), Daoxin Yao(姚道新), and Huixia Luo(罗惠霞). Chin. Phys. B, 2022, 31(3): 037406.
[11] Topological superconductivity in Janus monolayer transition metal dichalcogenides
Xian-Dong Li(李现东), Zuo-Dong Yu(余作东), Wei-Peng Chen(陈伟鹏), and Chang-De Gong(龚昌德). Chin. Phys. B, 2022, 31(11): 110304.
[12] Recent advances in quasi-2D superconductors via organic molecule intercalation
Mengzhu Shi(石孟竹), Baolei Kang(康宝蕾), Tao Wu(吴涛), and Xianhui Chen(陈仙辉). Chin. Phys. B, 2022, 31(10): 107403.
[13] Synthesis and properties of La1-xSrxNiO3 and La1-xSrxNiO2
Mengwu Huo(霍梦五), Zengjia Liu(刘增家), Hualei Sun(孙华蕾), Lisi Li(李历斯), Hui Lui(刘晖), Chaoxin Huang(黄潮欣), Feixiang Liang(梁飞翔), Bing Shen(沈冰), and Meng Wang(王猛). Chin. Phys. B, 2022, 31(10): 107401.
[14] Synthesis and superconductivity in yttrium superhydrides under high pressure
Yingying Wang(王莹莹), Kui Wang(王奎), Yao Sun(孙尧), Liang Ma(马良), Yanchao Wang(王彦超), Bo Zou(邹勃), Guangtao Liu(刘广韬), Mi Zhou(周密), and Hongbo Wang(王洪波). Chin. Phys. B, 2022, 31(10): 106201.
[15] Superconductivity in octagraphene
Jun Li(李军) and Dao-Xin Yao(姚道新). Chin. Phys. B, 2022, 31(1): 017403.
No Suggested Reading articles found!