CONDENSED MATTER: STRUCTURAL, MECHANICAL, AND THERMAL PROPERTIES |
Prev
Next
|
|
|
Band engineering of double-wall Mo-based hybrid nanotubes |
Lei Tao(陶蕾)1,2, Yu-Yang Zhang(张余洋)1,2,3, Jiatao Sun(孙家涛)1,2, Shixuan Du(杜世萱)1,2,3, Hong-Jun Gao(高鸿钧)1,2,3 |
1 Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China;
2 University of Chinese Academy of Sciences, Beijing 100190, China;
3 CAS Center for Excellence in Topological Quantum Computation, Chinese Academy of Sciences, Beijing 100190, China |
|
|
Abstract Hybrid transition-metal dichalcogenides (TMDs) with different chalcogens on each side (X-TM-Y) have attracted attention because of their unique properties. Nanotubes based on hybrid TMD materials have advantages in flexibility over conventional TMD nanotubes. Here we predict the wide band gap tunability of hybrid TMD double-wall nanotubes (DWNTs) from metal to semiconductor. Using density-function theory (DFT) with HSE06 hybrid functional, we find that the electronic property of X-Mo-Y DWNTs (X=O and S, inside a tube; Y=S and Se, outside a tube) depends both on electronegativity difference and diameter difference. If there is no difference in electron negativity between inner atoms (X) of outer tube and outer atoms (Y) of inner tube, the band gap of DWNTs is the same as that of the inner one. If there is a significant electronegativity difference, the electronic property of the DWNTs ranges from metallic to semiconducting, depending on the diameter differences. Our results provide alternative ways for the band gap engineering of TMD nanotubes.
|
Received: 18 April 2018
Revised: 24 April 2018
Accepted manuscript online:
|
PACS:
|
61.46.Fg
|
(Nanotubes)
|
|
73.20.At
|
(Surface states, band structure, electron density of states)
|
|
73.22.-f
|
(Electronic structure of nanoscale materials and related systems)
|
|
Corresponding Authors:
Shixuan Du
E-mail: sxdu@iphy.ac.cn
|
Cite this article:
Lei Tao(陶蕾), Yu-Yang Zhang(张余洋), Jiatao Sun(孙家涛), Shixuan Du(杜世萱), Hong-Jun Gao(高鸿钧) Band engineering of double-wall Mo-based hybrid nanotubes 2018 Chin. Phys. B 27 076104
|
[1] |
Barros E B, Jorio A, Samsonidze G G, Capaz R B, Souza Filho A G, Mendes Filho J, Dresselhaus G and Dresselhaus M S 2006 Phys. Rep. 431 261
|
[2] |
Guo W, Hu Y B, Zhang Y Y, Du S X and Gao H J 2009 Chin. Phys. B 18 2502
|
[3] |
Min Z and Jun S 2014 Chin. Phys. B 23 017301
|
[4] |
Dai X, Zhou Y, Li J, Zhang L, Zhao Z and Li H 2017 Chin. Phys. B 26 087310
|
[5] |
Xiao Z, Fan M, Ju T and Bing Y 2012 Acta Phys. Sin. 61 156101 (in Chinese)
|
[6] |
Levi R, Bitton O, Leitus G, Tenne R and Joselevich E 2013 Nano Lett. 13 3736
|
[7] |
Fathipour S, Remskar M, Varlec A, Ajoy A, Yan R, Vishwanath S, Rouvimov S, Hwang W S, Xing H G, Jena D and Seabaugh A 2015 Appl. Phy. Lett. 106 022114
|
[8] |
Strojnik M, Kovic A, Mrzel A, Buh J, Strle J and Mihailovic D 2014 AIP Advances 4 097114
|
[9] |
Zhang C, Wang S, Yang L, Liu Y, Xu T, Ning Z, Zak A, Zhang Z, Tenne R and Chen Q 2012 Appl. Phy. Lett. 100 243101
|
[10] |
Rapoport L, Bilik Y, Feldman Y, Homyonfer M, Cohen S R and Tenne R 1997 Nature 387 791
|
[11] |
Seifert G, Terrones H, Terrones M, Jungnickel G and Frauenheim T 2000 Phys. Rev. Lett. 85 146
|
[12] |
Zibouche N, Kuc A and Heine T 2012 Eur. Phys. J. B 85 49
|
[13] |
Ansari R, Malakpour S, Faghihnasiri M and Sahmani S 2015 Superlattices Microstruct. 82 188
|
[14] |
Lorenz T, Teich D, Joswig J O and Seifert G 2012 J. Phys. Chem. C 116 11714
|
[15] |
Xiao J, Long M, Li X, Xu H, Huang H and Gao Y 2015 Sci Rep. 4 4327
|
[16] |
Milošević I, Nikolić B, Dobardžić E, Damnjanović M, Popov I and Seifert G 2007 Phys. Rev. B 76 233414
|
[17] |
Tibbetts G G 1984 J. Cryst. Growth 66 632
|
[18] |
Seifert G, Köhler T and Tenne R 2002 J. Phys. Chem. B 106 2497
|
[19] |
Remškar M, Viršek M and Mrzel A 2009 Appl. Phy. Lett. 95 133122
|
[20] |
Lu A Y, Zhu H, Xiao J, Chuu C P, Han Y, Chiu M H, Cheng C C, Yang C W, Wei K H, Yang Y, Wang Y, Sokaras D, Nordlund D, Yang P, Muller D A, Chou M Y, Zhang X and Li L J 2017 Nat. Nanotech. 12 744
|
[21] |
Zhang J, Jia S, Kholmanov I, Dong L, Er D, Chen W, Guo H, Jin Z, Shenoy V B, Shi L and Lou J 2017 ACS Nano 11 8192
|
[22] |
Zhao W, Li Y, Duan W and Ding F 2015 Nanoscale 7 13586
|
[23] |
Wu H H, Meng Q, Huang H, Liu C T and Wang X L 2018 Phys. Chem. Chem. Phys. 20 3608
|
[24] |
Bhattacharyya S and Singh A K 2012 Phys. Rev. B 86 075454
|
[25] |
Brothers E N, Izmaylov A F, Normand J O, Barone V and Scuseria G E 2008 J. Chem. Phys. 129 011102
|
[26] |
Kresse G and Furthmüller J 1996 Phys. Rev. B 54 11169
|
[27] |
Blöchl P E 1994 Phys. Rev. B 50 17953
|
[28] |
Perdew J P, Burke K and Ernzerhof M 1996 Phys. Rev. Lett. 77 3865
|
[29] |
Heyd J, Scuseria G E and Ernzerhof M 2003 J. Chem. Phys. 118 8207
|
[30] |
Fuchs F, Furthmüller J, Bechstedt F, Shishkin M and Kresse G 2007 Phys. Rev. B 76 115109
|
[31] |
Batsanov S S 2001 Inorg. Mater. 37 871
|
[32] |
Ghorbani-Asl M, Zibouche N, Wahiduzzaman M, Oliveira A F, Kuc A and Heine T 2013 Sci. Rep. 3 2961
|
[33] |
Zhang Y Y, Du S X and Gao H J 2011 Phys. Rev. B 84 125446
|
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|