Please wait a minute...
Chin. Phys. B, 2018, Vol. 27(7): 076104    DOI: 10.1088/1674-1056/27/7/076104
CONDENSED MATTER: STRUCTURAL, MECHANICAL, AND THERMAL PROPERTIES Prev   Next  

Band engineering of double-wall Mo-based hybrid nanotubes

Lei Tao(陶蕾)1,2, Yu-Yang Zhang(张余洋)1,2,3, Jiatao Sun(孙家涛)1,2, Shixuan Du(杜世萱)1,2,3, Hong-Jun Gao(高鸿钧)1,2,3
1 Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China;
2 University of Chinese Academy of Sciences, Beijing 100190, China;
3 CAS Center for Excellence in Topological Quantum Computation, Chinese Academy of Sciences, Beijing 100190, China
Abstract  

Hybrid transition-metal dichalcogenides (TMDs) with different chalcogens on each side (X-TM-Y) have attracted attention because of their unique properties. Nanotubes based on hybrid TMD materials have advantages in flexibility over conventional TMD nanotubes. Here we predict the wide band gap tunability of hybrid TMD double-wall nanotubes (DWNTs) from metal to semiconductor. Using density-function theory (DFT) with HSE06 hybrid functional, we find that the electronic property of X-Mo-Y DWNTs (X=O and S, inside a tube; Y=S and Se, outside a tube) depends both on electronegativity difference and diameter difference. If there is no difference in electron negativity between inner atoms (X) of outer tube and outer atoms (Y) of inner tube, the band gap of DWNTs is the same as that of the inner one. If there is a significant electronegativity difference, the electronic property of the DWNTs ranges from metallic to semiconducting, depending on the diameter differences. Our results provide alternative ways for the band gap engineering of TMD nanotubes.

Keywords:  band engineering      nanotube      hybrid transition metal dichalcogenides      first-principle calculations  
Received:  18 April 2018      Revised:  24 April 2018      Accepted manuscript online: 
PACS:  61.46.Fg (Nanotubes)  
  73.20.At (Surface states, band structure, electron density of states)  
  73.22.-f (Electronic structure of nanoscale materials and related systems)  
Corresponding Authors:  Shixuan Du     E-mail:  sxdu@iphy.ac.cn

Cite this article: 

Lei Tao(陶蕾), Yu-Yang Zhang(张余洋), Jiatao Sun(孙家涛), Shixuan Du(杜世萱), Hong-Jun Gao(高鸿钧) Band engineering of double-wall Mo-based hybrid nanotubes 2018 Chin. Phys. B 27 076104

[1] Barros E B, Jorio A, Samsonidze G G, Capaz R B, Souza Filho A G, Mendes Filho J, Dresselhaus G and Dresselhaus M S 2006 Phys. Rep. 431 261
[2] Guo W, Hu Y B, Zhang Y Y, Du S X and Gao H J 2009 Chin. Phys. B 18 2502
[3] Min Z and Jun S 2014 Chin. Phys. B 23 017301
[4] Dai X, Zhou Y, Li J, Zhang L, Zhao Z and Li H 2017 Chin. Phys. B 26 087310
[5] Xiao Z, Fan M, Ju T and Bing Y 2012 Acta Phys. Sin. 61 156101 (in Chinese)
[6] Levi R, Bitton O, Leitus G, Tenne R and Joselevich E 2013 Nano Lett. 13 3736
[7] Fathipour S, Remskar M, Varlec A, Ajoy A, Yan R, Vishwanath S, Rouvimov S, Hwang W S, Xing H G, Jena D and Seabaugh A 2015 Appl. Phy. Lett. 106 022114
[8] Strojnik M, Kovic A, Mrzel A, Buh J, Strle J and Mihailovic D 2014 AIP Advances 4 097114
[9] Zhang C, Wang S, Yang L, Liu Y, Xu T, Ning Z, Zak A, Zhang Z, Tenne R and Chen Q 2012 Appl. Phy. Lett. 100 243101
[10] Rapoport L, Bilik Y, Feldman Y, Homyonfer M, Cohen S R and Tenne R 1997 Nature 387 791
[11] Seifert G, Terrones H, Terrones M, Jungnickel G and Frauenheim T 2000 Phys. Rev. Lett. 85 146
[12] Zibouche N, Kuc A and Heine T 2012 Eur. Phys. J. B 85 49
[13] Ansari R, Malakpour S, Faghihnasiri M and Sahmani S 2015 Superlattices Microstruct. 82 188
[14] Lorenz T, Teich D, Joswig J O and Seifert G 2012 J. Phys. Chem. C 116 11714
[15] Xiao J, Long M, Li X, Xu H, Huang H and Gao Y 2015 Sci Rep. 4 4327
[16] Milošević I, Nikolić B, Dobardžić E, Damnjanović M, Popov I and Seifert G 2007 Phys. Rev. B 76 233414
[17] Tibbetts G G 1984 J. Cryst. Growth 66 632
[18] Seifert G, Köhler T and Tenne R 2002 J. Phys. Chem. B 106 2497
[19] Remškar M, Viršek M and Mrzel A 2009 Appl. Phy. Lett. 95 133122
[20] Lu A Y, Zhu H, Xiao J, Chuu C P, Han Y, Chiu M H, Cheng C C, Yang C W, Wei K H, Yang Y, Wang Y, Sokaras D, Nordlund D, Yang P, Muller D A, Chou M Y, Zhang X and Li L J 2017 Nat. Nanotech. 12 744
[21] Zhang J, Jia S, Kholmanov I, Dong L, Er D, Chen W, Guo H, Jin Z, Shenoy V B, Shi L and Lou J 2017 ACS Nano 11 8192
[22] Zhao W, Li Y, Duan W and Ding F 2015 Nanoscale 7 13586
[23] Wu H H, Meng Q, Huang H, Liu C T and Wang X L 2018 Phys. Chem. Chem. Phys. 20 3608
[24] Bhattacharyya S and Singh A K 2012 Phys. Rev. B 86 075454
[25] Brothers E N, Izmaylov A F, Normand J O, Barone V and Scuseria G E 2008 J. Chem. Phys. 129 011102
[26] Kresse G and Furthmüller J 1996 Phys. Rev. B 54 11169
[27] Blöchl P E 1994 Phys. Rev. B 50 17953
[28] Perdew J P, Burke K and Ernzerhof M 1996 Phys. Rev. Lett. 77 3865
[29] Heyd J, Scuseria G E and Ernzerhof M 2003 J. Chem. Phys. 118 8207
[30] Fuchs F, Furthmüller J, Bechstedt F, Shishkin M and Kresse G 2007 Phys. Rev. B 76 115109
[31] Batsanov S S 2001 Inorg. Mater. 37 871
[32] Ghorbani-Asl M, Zibouche N, Wahiduzzaman M, Oliveira A F, Kuc A and Heine T 2013 Sci. Rep. 3 2961
[33] Zhang Y Y, Du S X and Gao H J 2011 Phys. Rev. B 84 125446
[1] Analytical determination of non-local parameter value to investigate the axial buckling of nanoshells affected by the passing nanofluids and their velocities considering various modified cylindrical shell theories
Soheil Oveissi, Aazam Ghassemi, Mehdi Salehi, S.Ali Eftekhari, and Saeed Ziaei-Rad. Chin. Phys. B, 2023, 32(4): 046201.
[2] Abnormal magnetic behavior of prussian blue analogs modified with multi-walled carbon nanotubes
Jia-Jun Mo(莫家俊), Pu-Yue Xia(夏溥越), Ji-Yu Shen(沈纪宇), Hai-Wen Chen(陈海文), Ze-Yi Lu(陆泽一), Shi-Yu Xu(徐诗语), Qing-Hang Zhang(张庆航), Yan-Fang Xia(夏艳芳), Min Liu(刘敏). Chin. Phys. B, 2023, 32(4): 047503.
[3] Modeling of thermal conductivity for disordered carbon nanotube networks
Hao Yin(殷浩), Zhiguo Liu(刘治国), and Juekuan Yang(杨决宽). Chin. Phys. B, 2023, 32(4): 044401.
[4] High-quality CdS quantum dots sensitized ZnO nanotube array films for superior photoelectrochemical performance
Qian-Qian Gong(宫倩倩), Yun-Long Zhao(赵云龙), Qi Zhang(张奇), Chun-Yong Hu(胡春永), Teng-Fei Liu(刘腾飞), Hai-Feng Zhang(张海峰), Guang-Chao Yin(尹广超), and Mei-Ling Sun(孙美玲). Chin. Phys. B, 2022, 31(9): 098103.
[5] SERS activity of carbon nanotubes modified by silver nanoparticles with different particle sizes
Xiao-Lei Zhang(张晓蕾), Jie Zhang(张洁), Yuan Luo(罗元), and Jia Ran(冉佳). Chin. Phys. B, 2022, 31(7): 077401.
[6] Effect of carbon nanotubes addition on thermoelectric properties of Ca3Co4O9 ceramics
Ya-Nan Li(李亚男), Ping Wu(吴平), Shi-Ping Zhang(张师平), Yi-Li Pei(裴艺丽), Jin-Guang Yang(杨金光), Sen Chen(陈森), and Li Wang(王立). Chin. Phys. B, 2022, 31(4): 047203.
[7] High-throughput computational material screening of the cycloalkane-based two-dimensional Dion—Jacobson halide perovskites for optoelectronics
Guoqi Zhao(赵国琪), Jiahao Xie(颉家豪), Kun Zhou(周琨), Bangyu Xing(邢邦昱), Xinjiang Wang(王新江), Fuyu Tian(田伏钰), Xin He(贺欣), and Lijun Zhang(张立军). Chin. Phys. B, 2022, 31(3): 037104.
[8] Lithium ion batteries cathode material: V2O5
Baohe Yuan(袁保合), Xiang Yuan(袁祥), Binger Zhang(张冰儿), Zheng An(安政), Shijun Luo(罗世钧), and Lulu Chen(陈露露). Chin. Phys. B, 2022, 31(3): 038203.
[9] Low-voltage soft robots based on carbon nanotube/polymer electrothermal composites
Qi Wang(王琪), Ying-Qiong Yong(雍颖琼), and Zhi-Ming Bai(白智明). Chin. Phys. B, 2022, 31(12): 128801.
[10] Raman spectroscopy of isolated carbyne chains confined in carbon nanotubes: Progress and prospects
Johannes M. A. Lechner, Pablo Hernández López, and Sebastian Heeg. Chin. Phys. B, 2022, 31(12): 127801.
[11] A review of arc-discharge method towards large-scale preparation of long linear carbon chains
Yi-Fan Zhang(张一帆). Chin. Phys. B, 2022, 31(12): 125201.
[12] Large-scale synthesis of polyynes with commercial laser marking technology
Liang Fang(房良), Yanping Xie(解燕平), Shujie Sun(孙书杰), and Wei Zi(訾威). Chin. Phys. B, 2022, 31(12): 126803.
[13] Energy band and charge-carrier engineering in skutterudite thermoelectric materials
Zhiyuan Liu(刘志愿), Ting Yang(杨婷), Yonggui Wang(王永贵), Ailin Xia(夏爱林), and Lianbo Ma(马连波). Chin. Phys. B, 2022, 31(10): 107303.
[14] Highly flexible and excellent performance continuous carbon nanotube fibrous thermoelectric modules for diversified applications
Xiao-Gang Xia(夏晓刚), Qiang Zhang(张强), Wen-Bin Zhou(周文斌), Zhuo-Jian Xiao(肖卓建), Wei Xi(席薇), Yan-Chun Wang(王艳春), and Wei-Ya Zhou(周维亚). Chin. Phys. B, 2021, 30(7): 078801.
[15] Electronic structures of vacancies in Co3Sn2S2
Yuxiang Gao(高于翔), Xin Jin(金鑫), Yixuan Gao(高艺璇), Yu-Yang Zhang(张余洋), and Shixuan Du(杜世萱). Chin. Phys. B, 2021, 30(7): 077102.
No Suggested Reading articles found!