Please wait a minute...
Chin. Phys. B, 2016, Vol. 25(6): 066105    DOI: 10.1088/1674-1056/25/6/066105
CONDENSED MATTER: STRUCTURAL, MECHANICAL, AND THERMAL PROPERTIES Prev   Next  

Understanding of surface pit formation mechanism of GaN grown in MOCVD based on local thermodynamic equilibrium assumption

Zhi-Yuan Gao(高志远), Xiao-Wei Xue(薛晓玮), Jiang-Jiang Li(李江江), Xun Wang(王勋), Yan-Hui Xing(邢艳辉), Bi-Feng Cui(崔碧峰), De-Shu Zou(邹德恕)
Microelectronic School, Beijing University of Technology, Beijing 100124, China
Abstract  

Frank's theory describes that a screw dislocation will produce a pit on the surface, and has been evidenced in many material systems including GaN. However, the size of the pit calculated from the theory deviates significantly from experimental result. Through a careful observation of the variations of surface pits and local surface morphology with growing temperature and V/III ratio for c-plane GaN, we believe that Frank's model is valid only in a small local surface area where thermodynamic equilibrium state can be assumed to stay the same. If the kinetic process is too vigorous or too slow to reach a balance, the local equilibrium range will be too small for the center and edge of the screw dislocation spiral to be kept in the same equilibrium state. When the curvature at the center of the dislocation core reaches the critical value 1/r0, at the edge of the spiral, the accelerating rate of the curvature may not fall to zero, so the pit cannot reach a stationary shape and will keep enlarging under the control of minimization of surface energy to result in a large-sized surface pit.

Keywords:  GaN      surface pit      Frank's model      local equilibrium  
Received:  25 October 2015      Revised:  22 January 2016      Accepted manuscript online: 
PACS:  61.72.Cc (Kinetics of defect formation and annealing)  
  68.55.-a (Thin film structure and morphology)  
  81.15.Gh (Chemical vapor deposition (including plasma-enhanced CVD, MOCVD, ALD, etc.))  
  61.72.uj (III-V and II-VI semiconductors)  
Fund: 

Project supported by the National Natural Science Foundation of China (Grant Nos. 11204009 and 61204011) and the Beijing Municipal Natural Science Foundation, China (Grant No. 4142005).

Corresponding Authors:  Zhi-Yuan Gao     E-mail:  zygao@bjut.edu.cn

Cite this article: 

Zhi-Yuan Gao(高志远), Xiao-Wei Xue(薛晓玮), Jiang-Jiang Li(李江江), Xun Wang(王勋), Yan-Hui Xing(邢艳辉), Bi-Feng Cui(崔碧峰), De-Shu Zou(邹德恕) Understanding of surface pit formation mechanism of GaN grown in MOCVD based on local thermodynamic equilibrium assumption 2016 Chin. Phys. B 25 066105

[1] Pirouz P 1998 Philosophical Magazine A 78 727
[2] Frank F C 1949 Discuss Faraday Soc. 5 48
[3] Dislocation Theory, Lecture in H. H. Wills Physical laboratory, University of Bristol, downed from the website
[4] Frank F C 1951 Acta Cryst. 4 497
[5] Burton W K, Cabrera N and Frank F C 1951 Phil. Trans. R. Soc. Lond. A 243 299
[6] Yan N B 1982 Physics of Crystal Growth (Shanghai: Shanghai Science and Technology Press) pp. 408-409
[7] Verma A R 1951 Nature 167 939
[8] Du D X and Srolovitz D J 2004 Acta Materialia 52 3365
[9] Liliental-Weber Z, Chen Y, Ruvimov S and Washburn J 1997 Phys. Rev. Lett. 79 2835
[10] Chen Y, Takeeuchi T, Amano H, Akasaki I, Yamada N, Kaneko Y and Wang S Y 1998 Appl. Phys. Lett. 72 710
[11] Cherns D, Young W T, Steeds J W, Ponce F A and Nakamura S 1997 J. Cryst. Growth 178 201
[12] Miraglia P W, Preble E A, Roskowski A M, Einfeldt S and Davis R F 2003 J. Cryst. Growth 253 16
[13] Son K S, Kim D G, Cho H K, Lee K, Kim S and Park K 2004 J. Cryst. Growth 261 50
[14] Soh C B, Chua S J, Tripathy S, Liu W and Chi D Z 2005 J. Phys.: Condens. Matter 17 729
[15] Tao Y B, Chen Z Z, Yu T J, Yin Y, Kang X N, Yang Z J, Ran G Z and Zhang G Y 2011 J. Cryst. Growth 318 509
[16] Liu J P, Wang Y T, Yang H, Jiang D S, Jahn U and Ploog K H 2004 Appl. Phys. Lett. 84 5449
[17] Gao Z Y, Li J J, Xue X W, Cui B F, Yan H X and Zou D S 2015 Sci. China: Technol. Sci. 58 1
[18] Xu S R, Hao Y, Zhang J C, Cao Y R, Zhou X W, Yang L A, Ou X X, Chen K and Mao W 2010 J. Cryst. Growth 312 3521
[19] Zhang G Y, Shen B and Chen Z Z 2014 Chin. Sci. Bull. 59 1201
[20] Northrup J E, Romano L T and Neugebauer J 1999 Appl. Phys. Lett. 74 2319
[21] Hadis M 2008 Handbook of nitride semiconductors and devices, Volume 1: material properties, physics and growth (Weinheim: WILEY-VCH Verlag GmbH & Co. KGaA) pp. 398-409
[22] Sun Q, Christopher D Y, Leung B, Han J and Coltrin M E 2011 J. Appl. Phys. 110 053517
[23] Glansdorff P and Prigogine I 1971 Thermodynamic theory of structure, stability and fluctuations (London: John Wiley & Sons Ltd) pp. 14-16
[24] Kong B H, Sun Q and Han J 2012 Appl. Surf. Sci. 258 2522
[25] He Z, Kang Y, Tang Y W, Li X and Fang J X 2006 Chin. Phys. 15 1325
[26] Sun Y J, Brandt O and Liu T Y 2002 Appl. Phys. Lett. 321 1056
[27] Feng Z C 2006 III-nitride semiconductor materials (London: Imperial College Press) pp. 174-185
[28] Koleske D D, Wickenden A E, Henry R L, Desisto W J and Gorman R J 1998 J. Appl. Phys. 84 1998
[1] Low-resistance ohmic contacts on InAlN/GaN heterostructures with MOCVD-regrown n+-InGaN and mask-free regrowth process
Jingshu Guo(郭静姝), Jiejie Zhu(祝杰杰), Siyu Liu(刘思雨), Jielong Liu(刘捷龙), Jiahao Xu(徐佳豪), Weiwei Chen(陈伟伟), Yuwei Zhou(周雨威), Xu Zhao(赵旭), Minhan Mi(宓珉瀚), Mei Yang(杨眉), Xiaohua Ma(马晓华), and Yue Hao(郝跃). Chin. Phys. B, 2023, 32(3): 037303.
[2] Reverse gate leakage mechanism of AlGaN/GaN HEMTs with Au-free gate
Xin Jiang(蒋鑫), Chen-Hao Li(李晨浩), Shuo-Xiong Yang(羊硕雄), Jia-Hao Liang(梁家豪), Long-Kun Lai(来龙坤), Qing-Yang Dong(董青杨), Wei Huang(黄威),Xin-Yu Liu(刘新宇), and Wei-Jun Luo(罗卫军). Chin. Phys. B, 2023, 32(3): 037201.
[3] Influence of the lattice parameter of the AlN buffer layer on the stress state of GaN film grown on (111) Si
Zhen-Zhuo Zhang(张臻琢), Jing Yang(杨静), De-Gang Zhao(赵德刚), Feng Liang(梁锋), Ping Chen(陈平), and Zong-Shun Liu(刘宗顺). Chin. Phys. B, 2023, 32(2): 028101.
[4] Achieving highly-efficient H2S gas sensor by flower-like SnO2-SnO/porous GaN heterojunction
Zeng Liu(刘增), Ling Du(都灵), Shao-Hui Zhang(张少辉), Ang Bian(边昂), Jun-Peng Fang(方君鹏), Chen-Yang Xing(邢晨阳), Shan Li(李山), Jin-Cheng Tang(汤谨诚), Yu-Feng Guo(郭宇锋), and Wei-Hua Tang(唐为华). Chin. Phys. B, 2023, 32(2): 020701.
[5] Demonstration and modeling of unipolar-carrier-conduction GaN Schottky-pn junction diode with low turn-on voltage
Lijian Guo(郭力健), Weizong Xu(徐尉宗), Qi Wei(位祺), Xinghua Liu(刘兴华), Tianyi Li(李天义), Dong Zhou(周东), Fangfang Ren(任芳芳), Dunjun Chen(陈敦军), Rong Zhang(张荣), Youdou Zheng(郑有炓), and Hai Lu(陆海). Chin. Phys. B, 2023, 32(2): 027302.
[6] Design optimization of high breakdown voltage vertical GaN junction barrier Schottky diode with high-K/low-K compound dielectric structure
Kuiyuan Tian(田魁元), Yong Liu(刘勇), Jiangfeng Du(杜江锋), and Qi Yu(于奇). Chin. Phys. B, 2023, 32(1): 017306.
[7] Bottom-up approaches to microLEDs emitting red, green and blue light based on GaN nanowires and relaxed InGaN platelets
Zhaoxia Bi(毕朝霞), Anders Gustafsson, and Lars Samuelson. Chin. Phys. B, 2023, 32(1): 018103.
[8] Physical analysis of normally-off ALD Al2O3/GaN MOSFET with different substrates using self-terminating thermal oxidation-assisted wet etching technique
Cheng-Yu Huang(黄成玉), Jin-Yan Wang(王金延), Bin Zhang(张斌), Zhen Fu(付振), Fang Liu(刘芳), Mao-Jun Wang(王茂俊), Meng-Jun Li(李梦军), Xin Wang(王鑫), Chen Wang(汪晨), Jia-Yin He(何佳音), and Yan-Dong He(何燕冬). Chin. Phys. B, 2022, 31(9): 097401.
[9] Liquid-phase synthesis of Li2S and Li3PS4 with lithium-based organic solutions
Jieru Xu(许洁茹), Qiuchen Wang(王秋辰), Wenlin Yan(闫汶琳), Liquan Chen(陈立泉), Hong Li(李泓), and Fan Wu(吴凡). Chin. Phys. B, 2022, 31(9): 098203.
[10] Mottness, phase string, and high-Tc superconductivity
Jing-Yu Zhao(赵靖宇) and Zheng-Yu Weng(翁征宇). Chin. Phys. B, 2022, 31(8): 087104.
[11] Inertial focusing and rotating characteristics of elliptical and rectangular particle pairs in channel flow
Pei-Feng Lin(林培锋), Xiao Hu(胡箫), and Jian-Zhong Lin(林建忠). Chin. Phys. B, 2022, 31(8): 080501.
[12] Effect of surface plasmon coupling with radiating dipole on the polarization characteristics of AlGaN-based light-emitting diodes
Yi Li(李毅), Mei Ge(葛梅), Meiyu Wang(王美玉), Youhua Zhu(朱友华), and Xinglong Guo(郭兴龙). Chin. Phys. B, 2022, 31(7): 077801.
[13] Enhancing performance of GaN-based LDs by using GaN/InGaN asymmetric lower waveguide layers
Wen-Jie Wang(王文杰), Ming-Le Liao(廖明乐), Jun Yuan(袁浚), Si-Yuan Luo(罗思源), and Feng Huang(黄锋). Chin. Phys. B, 2022, 31(7): 074206.
[14] Simulation design of normally-off AlGaN/GaN high-electron-mobility transistors with p-GaN Schottky hybrid gate
Yun-Long He(何云龙), Fang Zhang(张方), Kai Liu(刘凯), Yue-Hua Hong(洪悦华), Xue-Feng Zheng(郑雪峰),Chong Wang(王冲), Xiao-Hua Ma(马晓华), and Yue Hao(郝跃). Chin. Phys. B, 2022, 31(6): 068501.
[15] Effects of electrical stress on the characteristics and defect behaviors in GaN-based near-ultraviolet light emitting diodes
Ying-Zhe Wang(王颖哲), Mao-Sen Wang(王茂森), Ning Hua(化宁), Kai Chen(陈凯), Zhi-Min He(何志敏), Xue-Feng Zheng(郑雪峰), Pei-Xian Li(李培咸), Xiao-Hua Ma(马晓华), Li-Xin Guo(郭立新), and Yue Hao(郝跃). Chin. Phys. B, 2022, 31(6): 068101.
No Suggested Reading articles found!