Please wait a minute...
Chin. Phys. B, 2016, Vol. 25(4): 048504    DOI: 10.1088/1674-1056/25/4/048504

Damage effect and mechanism of the GaAs high electron mobility transistor induced by high power microwave

Yang Liu(刘阳)1, Chang-Chun Chai(柴常春)1, Yin-Tang Yang(杨银堂)1, Jing Sun(孙静)2, Zhi-Peng Li(李志鹏)2
1 Ministry of Education Key Laboratory of Wide Band-Gap Semiconductor Materials and Devices, Xidian University, Xi'an 710071, China;
2 Space Payload System Innovation Center, China Academy of Space Technology, Xi'an 710100, China
Abstract  In this paper, we present the damage effect and mechanism of high power microwave (HPM) on AlGaAs/GaAs pseudomorphic high-electron-mobility transistor (pHEMT) of low-noise amplifier (LNA). A detailed investigation is carried out by simulation and experiment study. A two-dimensional electro-thermal model of the typical GaAs pHEMT induced by HPM is established in this paper. The simulation result reveals that avalanche breakdown, intrinsic excitation, and thermal breakdown all contribute to damage process. Heat accumulation occurs during the positive half cycle and the cylinder under the gate near the source side is most susceptible to burn-out. Experiment is carried out by injecting high power microwave into GaAs pHEMT LNA samples. It is found that the damage to LNA is because of the burn-out at first stage pHEMT. The interiors of the damaged samples are observed by scanning electron microscopy (SEM) and energy dispersive spectrometer (EDS). Experimental results accord well with the simulation of our model.
Keywords:  low noise amplifier      HEMT      high power microwave      damage effect  
Received:  02 December 2015      Revised:  26 December 2015      Accepted manuscript online: 
PACS:  85.30.Tv (Field effect devices)  
  84.40.-x (Radiowave and microwave (including millimeter wave) technology)  
Fund: Project supported by the National Basic Research Program of China (Grant No. 2014CB339900) and the Open Fund of Key Laboratory of Complex Electromagnetic Environment Science and Technology, China Academy of Engineering Physics (Grant No. 2015-0214.XY.K).
Corresponding Authors:  Yang Liu     E-mail:

Cite this article: 

Yang Liu(刘阳), Chang-Chun Chai(柴常春), Yin-Tang Yang(杨银堂), Jing Sun(孙静), Zhi-Peng Li(李志鹏) Damage effect and mechanism of the GaAs high electron mobility transistor induced by high power microwave 2016 Chin. Phys. B 25 048504

[1] Ren Z, Yin W Y Shi Y B and Liu Q H 2010 IEEE Trans. Electron Dev. 57 345
[2] Kim Kand Iliadis A A 2010 Solid-State Electron. 54 18
[3] Iliadis A Aand Kyechong K 2010 IEEE Trans. Dev. Mater. Reliab. 10 347
[4] Mansson D, Thottappillil R, Nilsson T, Lunden O and Backstrom M 2008 IEEE Trans. Electromagn. Compat. 50 434
[5] Kim K and Iliadis A A 2008 Solid-State Electron. 52 1589
[6] Nitsch D, Camp M, Sabath F, ter Haseborg J L and Garbe H 2004 IEEE Trans. Electromagn. Compat. 46 380
[7] Sabath F 2008 Poceedings of the 29th General Assembly of the URSI, 2008, Chicago, USA, p. 50 101
[8] Brauer F, Sabath F. terHaseborg J L 2009 IEEE International Symposium on the Electromagnetic Compatibility, 2009, Piscataway, NJ, USA
[9] Fang J Y, Shen J A, Yang Z Q and Qiao D J 2003 High Power Laser and Particle Beams 15 591 (in Chinese)
[10] Palisek L and Suchy L 2009 Proceeding of the 17th IEEE International Pulsed Power Conference, 2009, Washington, DC, USA, p. 1244
[11] Backstrom M G and Lovstrand K G 2004 IEEE Trans. Electromagn. Compat. 46 396
[12] Klunder C and Haseborg J L 2010 IEEE International Symposium on the Electromagnetic Compatibility, 2010, p. 359
[13] Liu C J, Yan L P, Fan R D, Luo J and Pu T L 2007 High Power Laser and Particle Beams 19 1580 (in Chinese)
[14] Yu X H, Chai C C, Ren X R, Yang Y T, Xi X W and Liu Y 2014 J. Semicond. 35 084011
[15] Ma Z Y, Chai C C, Ren X R, Yang Y T and Chen B 2012 Acta Phys. Sin. 61 078501 (in Chinese)
[16] Ma Z Y, Chai C C, Ren X R, Yang Y T Chen B and Zhao Y B 2012 Chin. Phys. B 21 058502
[17] Ma Z Y, Chai C C, Ren X R, Yang Y T, Chen B, Song K and Zhao Y B 2012 Chin. Phys. B 21 098502
[18] Ma Z Y, Chai C C, Ren X R, Yang Y T, Zhao Y B and Qiao L P 2013 Chin. Phys. B 22 028502
[19] Wemple S H, Niehous W C, Fukui H, Irvin J C, Cox H M, Hwang J C, Dilorenzo J V and Schlosser W O 1981 IEEE Trans. Electron Dev. 28 834
[20] Whalen J J, Kemerley R and Rastefano E 1982 IEEE Trans. Micro. Theory Tech. 30 2206
[21] Zhang C B, Wang H G, Zhang J D, Du G X and Yang J 2014 IEEE Trans. Electromagn. Compat. 56 1545
[22] Yu X H, Chai C C, Liu Y, Yang Y T and Fan Q Y 2015 Microelectron. Reliab. 55 1174
[23] Zhang C B, Zhang J D, Wang H G and Du G X 2015 Microelectron. Reliab. 55 508
[24] Adachi S Properties of Gallium Arsenide. EMIS Datareviews Series (Lodon: Rrozel and G.E.Stillman) p. 32
[25] Blakemore J S 1982 J. Appl. Phys. 53 123
[26] Canali C, Majni G, Minder R and Ottaviani G 1975 IEEE Trans. Elec-tron Dev. 22 1045
[27] Synopsys Inc. 2013 Sentaurus Device User Guide, CA, USA
[28] Liu E K, Zhu B S and Luo J S 1994 The Physics of Semiconductor (Beijing: National Defense Industry Press), p. 100 (in Chinese)
[29] Chai C C, Yang Y T, Zhang B, Leng P, Yang Y and Rao W 2009 Semi-cond. Sci. Technol. 24 035003
[1] Impact of AlxGa1-xN barrier thickness and Al composition on electrical properties of ferroelectric HfZrO/Al2O3/AlGaN/GaN MFSHEMTs
Yue Li(李跃), Xingpeng Liu(刘兴鹏), Tangyou Sun(孙堂友), Fabi Zhang(张法碧), Tao Fu(傅涛), Peihua Wang-yang(王阳培华), Haiou Li(李海鸥), and Yonghe Chen(陈永和). Chin. Phys. B, 2022, 31(9): 097307.
[2] Enhancement of fMAX of InP-based HEMTs by double-recessed offset gate process
Bo Wang(王博), Peng Ding(丁芃), Rui-Ze Feng(封瑞泽), Shu-Rui Cao(曹书睿), Hao-Miao Wei(魏浩淼), Tong Liu(刘桐), Xiao-Yu Liu(刘晓宇), Hai-Ou Li(李海鸥), and Zhi Jin(金智). Chin. Phys. B, 2022, 31(5): 058506.
[3] Current oscillation in GaN-HEMTs with p-GaN islands buried layer for terahertz applications
Wen-Lu Yang(杨文璐), Lin-An Yang(杨林安), Fei-Xiang Shen(申飞翔), Hao Zou(邹浩), Yang Li(李杨), Xiao-Hua Ma(马晓华), and Yue Hao(郝跃). Chin. Phys. B, 2022, 31(5): 058505.
[4] Impact of gate offset in gate recess on DC and RF performance of InAlAs/InGaAs InP-based HEMTs
Shurui Cao(曹书睿), Ruize Feng(封瑞泽), Bo Wang(王博), Tong Liu(刘桐), Peng Ding(丁芃), and Zhi Jin(金智). Chin. Phys. B, 2022, 31(5): 058502.
[5] Extrinsic equivalent circuit modeling of InP HEMTs based on full-wave electromagnetic simulation
Shi-Yu Feng(冯识谕), Yong-Bo Su(苏永波), Peng Ding(丁芃), Jing-Tao Zhou(周静涛), Song-Ang Peng(彭松昂), Wu-Chang Ding(丁武昌), and Zhi Jin(金智). Chin. Phys. B, 2022, 31(4): 047303.
[6] High power-added-efficiency AlGaN/GaN HEMTs fabricated by atomic level controlled etching
Xinchuang Zhang(张新创), Bin Hou(侯斌), Fuchun Jia(贾富春), Hao Lu(芦浩), Xuerui Niu(牛雪锐), Mei Wu(武玫), Meng Zhang(张濛), Jiale Du(杜佳乐), Ling Yang(杨凌), Xiaohua Ma(马晓华), and Yue Hao(郝跃). Chin. Phys. B, 2022, 31(2): 027301.
[7] Fluorine-plasma treated AlGaN/GaN high electronic mobility transistors under off-state overdrive stress
Dongyan Zhao(赵东艳), Yubo Wang(王于波), Yanning Chen(陈燕宁), Jin Shao(邵瑾), Zhen Fu(付振), Fang Liu(刘芳), Yanrong Cao(曹艳荣), Faqiang Zhao(赵法强), Mingchen Zhong(钟明琛), Yasong Zhang(张亚松), Maodan Ma(马毛旦), Hanghang Lv(吕航航), Zhiheng Wang(王志恒), Ling Lv(吕玲), Xuefeng Zheng(郑雪峰), and Xiaohua Ma(马晓华). Chin. Phys. B, 2022, 31(11): 117301.
[8] A novel Si-rich SiN bilayer passivation with thin-barrier AlGaN/GaN HEMTs for high performance millimeter-wave applications
Zhihong Chen(陈治宏), Minhan Mi(宓珉瀚), Jielong Liu(刘捷龙), Pengfei Wang(王鹏飞), Yuwei Zhou(周雨威), Meng Zhang(张濛), Xiaohua Ma(马晓华), and Yue Hao(郝跃). Chin. Phys. B, 2022, 31(11): 117105.
[9] Impact of symmetric gate-recess length on the DC and RF characteristics of InP HEMTs
Ruize Feng(封瑞泽), Bo Wang(王博), Shurui Cao(曹书睿), Tong Liu(刘桐), Yongbo Su(苏永波), Wuchang Ding(丁武昌), Peng Ding(丁芃), and Zhi Jin(金智). Chin. Phys. B, 2022, 31(1): 018505.
[10] C band microwave damage characteristics of pseudomorphic high electron mobility transistor
Qi-Wei Li(李奇威), Jing Sun(孙静), Fu-Xing Li(李福星), Chang-Chun Chai(柴常春), Jun Ding(丁君), and Jin-Yong Fang(方进勇). Chin. Phys. B, 2021, 30(9): 098502.
[11] A comparative study on radiation reliability of composite channel InP high electron mobility transistors
Jia-Jia Zhang(张佳佳), Peng Ding(丁芃), Ya-Nan Jin(靳雅楠), Sheng-Hao Meng(孟圣皓), Xiang-Qian Zhao(赵向前), Yan-Fei Hu(胡彦飞), Ying-Hui Zhong(钟英辉), and Zhi Jin(金智). Chin. Phys. B, 2021, 30(7): 070702.
[12] Degradation of gate-recessed MOS-HEMTs and conventional HEMTs under DC electrical stress
Yi-Dong Yuan(原义栋), Dong-Yan Zhao(赵东艳), Yan-Rong Cao(曹艳荣), Yu-Bo Wang(王于波), Jin Shao(邵瑾), Yan-Ning Chen(陈燕宁), Wen-Long He(何文龙), Jian Du(杜剑), Min Wang(王敏), Ye-Ling Peng(彭业凌), Hong-Tao Zhang(张宏涛), Zhen Fu(付振), Chen Ren(任晨), Fang Liu(刘芳), Long-Tao Zhang(张龙涛), Yang Zhao(赵扬), Ling Lv(吕玲), Yi-Qiang Zhao(赵毅强), Xue-Feng Zheng(郑雪峰), Zhi-Mei Zhou(周芝梅), Yong Wan(万勇), and Xiao-Hua Ma(马晓华). Chin. Phys. B, 2021, 30(7): 077305.
[13] Ferroelectric effect and equivalent polarization charge model of PbZr0.2Ti0.8O3 on AlGaN/GaN MIS-HEMT
Yao-Peng Zhao(赵垚澎), Chong Wang(王冲), Xue-Feng Zheng(郑雪峰), Xiao-Hua Ma(马晓华), Ang Li(李昂), Kai Liu(刘凯), Yun-Long He(何云龙), Xiao-Li Lu(陆小力) and Yue Hao(郝跃). Chin. Phys. B, 2021, 30(5): 057302.
[14] Effects of notch structures on DC and RF performances of AlGaN/GaN high electron mobility transistors
Hao Zou(邹浩), Lin-An Yang(杨林安), Xiao-Hua Ma(马晓华), and Yue Hao(郝跃). Chin. Phys. B, 2021, 30(4): 040502.
[15] Analysis on degradation mechanisms of normally-off p-GaN gate AlGaN/GaN high-electron mobility transistor
Si-De Song(宋思德), Su-Zhen Wu(吴素贞), Guo-Zhu Liu(刘国柱), Wei Zhao(赵伟), Yin-Quan Wang(王印权), Jian-Wei Wu(吴建伟), and Qi He(贺琪). Chin. Phys. B, 2021, 30(4): 047103.
No Suggested Reading articles found!