CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES |
Prev
Next
|
|
|
An analytical model for nanowire junctionless SOI FinFETs with considering three-dimensional coupling effect |
Fan-Yu Liu(刘凡宇)1, Heng-Zhu Liu(刘衡竹)1, Bi-Wei Liu(刘必慰)1, Yu-Feng Guo(郭宇峰)2 |
1 School of Computer, National University of Defense Technology, Changsha 410073, China; 2 Electronic Science and Engineering, Nanjing University of Posts and Telecommunications, Nanjing 201131, China |
|
|
Abstract In this paper, the three-dimensional (3D) coupling effect is discussed for nanowire junctionless silicon-on-insulator (SOI) FinFETs. With fin width decreasing from 100 nm to 7 nm, the electric field induced by the lateral gates increases and therefore the influence of back gate on the threshold voltage weakens. For a narrow and tall fin, the lateral gates mainly control the channel and therefore the effect of back gate decreases. A simple two-dimensional (2D) potential model is proposed for the subthreshold region of junctionless SOI FinFET. TCAD simulations validate our model. It can be used to extract the threshold voltage and doping concentration. In addition, the tuning of back gate on the threshold voltage can be predicted.
|
Received: 25 October 2015
Revised: 26 December 2015
Accepted manuscript online:
|
PACS:
|
73.40.Qv
|
(Metal-insulator-semiconductor structures (including semiconductor-to-insulator))
|
|
85.30.-z
|
(Semiconductor devices)
|
|
77.55.df
|
(For silicon electronics)
|
|
Fund: Project supported by the Research Program of the National University of Defense Technology (Grant No. JC 13-06-04). |
Corresponding Authors:
Fan-Yu Liu
E-mail: liufanyu986412@hotmail.com
|
Cite this article:
Fan-Yu Liu(刘凡宇), Heng-Zhu Liu(刘衡竹), Bi-Wei Liu(刘必慰), Yu-Feng Guo(郭宇峰) An analytical model for nanowire junctionless SOI FinFETs with considering three-dimensional coupling effect 2016 Chin. Phys. B 25 047305
|
[1] |
Colinge J P, Lee C W, Afzalian A, Akhavan N D, Yan R, Ferain I, Razavi P, O'Neill B, Blake A, White M, Anne-Marie K, Brendan M and Richard M 2010 Nature Nanotechnology 5 225
|
[2] |
Doria R T, Pavanello M A, Trevisoli R D, de Souza M, Lee C W, Ferain I, Akhavan N D, Ran Y, Razavi P, Ran Y, Kranti A and Colinge J P 2011 IEEE Trans. Electron Dev. 58 2511
|
[3] |
Kranti A, Lee C W, Ferain I, Yan R, Akhavan N, Razavi P, Yu R, Armstrong, G A and Colinge J P 2010 Electron Lett. 46 1491
|
[4] |
Baek D J, Duarte J P, Moon D I, Kim C H, Ahn J H and Choi Y K 2012 Appl. Phys. Lett. 100 213703
|
[5] |
Lim H K and Fossum J G 1983 IEEE Trans. Electron Dev. 30 1244
|
[6] |
Fernandez C, Rodriguez N, Ohata A, Gamiz, F, Andrieu F, Fenouillet-Beranger C, Faynot O and Cristoloveanu S 2013 IEEE Electron Dev. Lett. 34 840
|
[7] |
Parihar M S, Liu F Y, Navarro C, Barraud S, Bawedin M, Ionica I, Kranti A and Cristoloveanu S 2015 Proceedings of 45th Europe Solid-State Device Conference, Wien, Austria, p. 61
|
[8] |
Park S J, Jeon D Y, Mont'es L, Barraud S, Kim G T and Ghibaudo G 2013 Solid-State Electron. 87 74
|
[9] |
Chang S J, Bawedin M, Guo Y F, Liu F Y, Akarvardar K, Lee J H, Ionica I and Cristoloveanu S 2014 Solid-State Electron. 97 88
|
[10] |
Lee C W, Afzalian A, Akhavan N D, Yan R, Ferain I and Colinge J P 2009 Appl. Phys. Lett. 94 053511
|
[11] |
Lee C W, Ferain I, Afzalian A, Yan R, Akhavan N D, Razavi P and Colinge J P 2010 Solid-State Electron. 54 97
|
[12] |
Sallese J M, Chevillon N, Lallement C, Iñíguez B and Pregaldiny F 2011 IEEE Trans. Electron Dev. 58 2628
|
[13] |
Colinge J P 1990 IEEE Trans. Electron Dev. 37 718
|
[14] |
Duarte J P, Choi S J and Choi Y K 2011 IEEE Trans. Electron Dev. 58 4219
|
[15] |
Holtij T, Schwarz M, Kloes A and Iñíguez B 2013 Solid-State Electron. 90 107
|
[16] |
Trevisoli R D, Doria R T, de Souza M, Das S, Ferain I and Pavanello M A 2012 IEEE Trans. Electron Dev. 59 3510
|
[17] |
Colinge J P, Kranti A, Yan R, Lee C W, Ferain I, Yu R, Akhavan N D and Razavi P 2011 Solid-State Electron. 65 33
|
[18] |
Jeon D Y, Park S J, Mouis M, Barraud S, Kim G T and Ghibaudo G 2013 Solid-State Electron. 81 58
|
[19] |
Synopsys Inc., TCAD Sentaurus User Manual G-2012.06 2012
|
[20] |
Liu F Y, Diab A, Ionica I, Akarvardar K, Hobbs C, Ouisse T, Mescot X and Cristoloveanu S 2013 Solid-State Electron. 90 65
|
[21] |
Akarvardar K, Mercha A, Cristoloveanu S, Gentil P, Simoen E, Subramanian V and Claeys C 2007 IEEE Trans. Electron Dev. 54 767
|
[22] |
Hu W D, Chen X S, Zhou X C, Quan Z J and Wei L 2006 Microelectron. J. 37 613
|
[23] |
Jeon D Y, Park S J, Mouis M, Berthomé M, Barraud S, Kim G T and Ghibaudo G 2013 Solid-State Electron. 90 86
|
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|