Please wait a minute...
Chin. Phys. B, 2021, Vol. 30(3): 038501    DOI: 10.1088/1674-1056/abd38f
INTERDISCIPLINARY PHYSICS AND RELATED AREAS OF SCIENCE AND TECHNOLOGY Prev   Next  

New DDSCR structure with high holding voltage for robust ESD applications

Zi-Jie Zhou(周子杰)1,2, Xiang-Liang Jin(金湘亮)1,2,3,†, Yang Wang(汪洋)1,2, and Peng Dong(董鹏)4
1 School of Physics and Optoelectronics, Xiangtan University, Xiangtan 411105, China; 2 Hunan Engineering Laboratory for Microelectronics, Optoelectronics and System on a Chip, Xiangtan 411105, China; 3 School of Physics and Electronics, Hunan Normal University, Changsha 410081, China; 4 Super-ESD Microelectronics Technology CO., LTD., Changsha 410100, China
Abstract  A novel dual direction silicon-controlled rectifier (DDSCR) with an additional P-type doping and gate (APGDDSCR) is proposed and demonstrated. Compared with the conventional low-voltage trigger DDSCR (LVTDDSCR) that has positive and negative holding voltages of 13.371 V and 14.038 V, respectively, the new DDSCR has high positive and negative holding voltages of 18.781 V and 18.912 V in a single finger device, respectively, and it exhibits suitable enough positive and negative holding voltages of 14.60 V and 14.319 V in a four-finger device for 12-V application. The failure current of APGDDSCR is almost the same as that of LVT-DDSCR in the single finger device, and the four-finger APGDDSCR can achieve positive and negative human-body model (HBM) protection capabilities of 22.281 kV and 23.45 kV, respectively, under 40-V voltage of core circuit failure, benefitting from the additional structure. The new structure can generate a snapback voltage on gate A to increase the current gain of the parasitic PNP in holding voltage. Thus, a sufficiently high holding voltage increased by the structure can ensure that a multi-finger device can also reach a sufficient holding voltage, it is equivalent to solving the non-uniform triggering problem of multi-finger device. The operating mechanism and the gate voltage are both discussed and verified in two-dimensional (2D) simulation and experiemnt.
Keywords:  dual direction silicon-controlled rectifier (DDSCR)      failure current      snapback gate voltage      simulation      transmission line pulsing (TLP)  
Received:  16 September 2020      Revised:  02 November 2020      Accepted manuscript online:  15 December 2020
PACS:  85.30.De (Semiconductor-device characterization, design, and modeling)  
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 61774129, 61827812, and 61704145), the Huxiang High-level Talent Gathering Project from the Hunan Science and Technology Department, China (Grant No. 2019RS1037), and the Changsha Science and Technology Plan Key Projects, China (Grant Nos. kq1801035 and kq1703001).
Corresponding Authors:  Corresponding author. E-mail: jinxl@hunnu.edu.cn   

Cite this article: 

Zi-Jie Zhou(周子杰), Xiang-Liang Jin(金湘亮), Yang Wang(汪洋), and Peng Dong(董鹏) New DDSCR structure with high holding voltage for robust ESD applications 2021 Chin. Phys. B 30 038501

1 Ker M D and Ksu K C 2005 IEEE Trans. Dev. Mater. Rel. 5 235
2 Song W Q, Hou F, Du F B, Liu Z W and Liou J J 2020 Chin. Phys. B 29 098502
3 Qi Z, Qiao M, He Y T and Zhang B 2017 Chin. Phys. B. 26 077304
4 Wang Y, Jin X L, Peng Y, Luo J and Yang J 2020 IEEE Transactions on Power Electronics 35 4669
5 Wang Y, Jin X L, Yang L, Jiang Q and Yuan H H 2015 Microelectron. Reliab. 55 520
6 Wang Y, Jin X L, Peng Y, Luo J, Yang J, Zheng Z, Jiang J and Zhong Z 2019 IEEE Journal of Emerging and Selected Topics in Power Electronics 1-1
7 Li J Y, Wang Y, Jia D D, Wei W P and Dong P 2020 Chin. Phys. B 29 108501
8 Salcedo J and Liou J 2006 IEEE Electron. Dev. Lett. 27 65
9 Liang H L, Xu Q, Zhu L, Gu X F, Sun G P, Lin F, Zhang S, Xiao K and Yu Z G 2019 IEEE Electron. Dev. Lett. 40 163
10 Huang X Z, Liou J J, Liu Z W, Liu F, Liu Z W and Cheng H 2016 IEEE Electron. Dev. Lett. 37 1311
11 Dong S R, Jin H, Miao M, Wu J and Liou J J 2012 IEEE Electron. Dev. Lett. 33 640
12 Guan J, Wang Y, Hao S W, Zheng Y F and Jin X L 2017 IEEE Electron. Dev. Lett. 38 1716
13 Liu Z W, Liou J J and Han Y 2010 IEEE Electron. Dev. 31 845
14 Dai C T and Ker M D 2018 IEEE Trans. Electron. Dev. 65 798
15 Du F B, Hou F, Liu Z W, Liu J Z and Liou J J 2019 Electron. Lett. 55 112
16 Du F B, Liu Z W, L J Z, Wang J and Liou J J 2019 IEEE Trans. Dev. Mater. Rel. 19 169
17 Do K, Lee B S and Koo Y S 2019 IEEE J. Electron Dev. Soc. 7 601
18 Liu Z W, Liou J J and Vinson J 2008 IEEE Electron. Dev. 29 753
[1] Abnormal magnetic behavior of prussian blue analogs modified with multi-walled carbon nanotubes
Jia-Jun Mo(莫家俊), Pu-Yue Xia(夏溥越), Ji-Yu Shen(沈纪宇), Hai-Wen Chen(陈海文), Ze-Yi Lu(陆泽一), Shi-Yu Xu(徐诗语), Qing-Hang Zhang(张庆航), Yan-Fang Xia(夏艳芳), Min Liu(刘敏). Chin. Phys. B, 2023, 32(4): 047503.
[2] Micromagnetic study of magnetization reversal in inhomogeneous permanent magnets
Zhi Yang(杨质), Yuanyuan Chen(陈源源), Weiqiang Liu(刘卫强), Yuqing Li(李玉卿), Liying Cong(丛利颖), Qiong Wu(吴琼), Hongguo Zhang(张红国), Qingmei Lu(路清梅), Dongtao Zhang(张东涛), and Ming Yue(岳明). Chin. Phys. B, 2023, 32(4): 047504.
[3] Coexisting lattice contractions and expansions with decreasing thicknesses of Cu (100) nano-films
Simin An(安思敏), Xingyu Gao(高兴誉), Xian Zhang(张弦), Xin Chen(陈欣), Jiawei Xian(咸家伟), Yu Liu(刘瑜), Bo Sun(孙博), Haifeng Liu(刘海风), and Haifeng Song(宋海峰). Chin. Phys. B, 2023, 32(3): 036804.
[4] Intense low-noise terahertz generation by relativistic laser irradiating near-critical-density plasma
Shijie Zhang(张世杰), Weimin Zhou(周维民), Yan Yin(银燕), Debin Zou(邹德滨), Na Zhao(赵娜), Duan Xie(谢端), and Hongbin Zhuo(卓红斌). Chin. Phys. B, 2023, 32(3): 035201.
[5] Quantitative measurement of the charge carrier concentration using dielectric force microscopy
Junqi Lai(赖君奇), Bowen Chen(陈博文), Zhiwei Xing(邢志伟), Xuefei Li(李雪飞), Shulong Lu(陆书龙), Qi Chen(陈琪), and Liwei Chen(陈立桅). Chin. Phys. B, 2023, 32(3): 037202.
[6] Molecular dynamics study of interactions between edge dislocation and irradiation-induced defects in Fe–10Ni–20Cr alloy
Tao-Wen Xiong(熊涛文), Xiao-Ping Chen(陈小平), Ye-Ping Lin(林也平), Xin-Fu He(贺新福), Wen Yang(杨文), Wang-Yu Hu(胡望宇), Fei Gao(高飞), and Hui-Qiu Deng(邓辉球). Chin. Phys. B, 2023, 32(2): 020206.
[7] Gyrokinetic simulation of low-n Alfvénic modes in tokamak HL-2A plasmas
Wen-Hao Lin(林文浩), Ji-Quan Li(李继全), J Garcia, and S Mazzi. Chin. Phys. B, 2023, 32(2): 025202.
[8] Different roles of surfaces' interaction on lattice mismatched/matched surfaces in facilitating ice nucleation
Xuanhao Fu(傅宣豪) and Xin Zhou(周昕). Chin. Phys. B, 2023, 32(2): 028202.
[9] Experiment and simulation on degradation and burnout mechanisms of SiC MOSFET under heavy ion irradiation
Hong Zhang(张鸿), Hongxia Guo(郭红霞), Zhifeng Lei(雷志锋), Chao Peng(彭超), Zhangang Zhang(张战刚), Ziwen Chen(陈资文), Changhao Sun(孙常皓), Yujuan He(何玉娟), Fengqi Zhang(张凤祁), Xiaoyu Pan(潘霄宇), Xiangli Zhong(钟向丽), and Xiaoping Ouyang(欧阳晓平). Chin. Phys. B, 2023, 32(2): 028504.
[10] Micro-mechanism study of the effect of Cd-free buffer layers ZnXO (X=Mg/Sn) on the performance of flexible Cu2ZnSn(S, Se)4 solar cell
Caixia Zhang(张彩霞), Yaling Li(李雅玲), Beibei Lin(林蓓蓓), Jianlong Tang(唐建龙), Quanzhen Sun(孙全震), Weihao Xie(谢暐昊), Hui Deng(邓辉), Qiao Zheng(郑巧), and Shuying Cheng(程树英). Chin. Phys. B, 2023, 32(2): 028801.
[11] Effect of a static pedestrian as an exit obstacle on evacuation
Yang-Hui Hu(胡杨慧), Yu-Bo Bi(毕钰帛), Jun Zhang(张俊), Li-Ping Lian(练丽萍), Wei-Guo Song(宋卫国), and Wei Gao(高伟). Chin. Phys. B, 2023, 32(1): 018901.
[12] Time-resolved K-shell x-ray spectra of nanosecond laser-produced titanium tracer in gold plasmas
Zhencen He(何贞岑), Jiyan Zhang(张继彦), Jiamin Yang(杨家敏), Bing Yan(闫冰), and Zhimin Hu(胡智民). Chin. Phys. B, 2023, 32(1): 015202.
[13] Adsorption dynamics of double-stranded DNA on a graphene oxide surface with both large unoxidized and oxidized regions
Mengjiao Wu(吴梦娇), Huishu Ma(马慧姝), Haiping Fang(方海平), Li Yang(阳丽), and Xiaoling Lei(雷晓玲). Chin. Phys. B, 2023, 32(1): 018701.
[14] Variational quantum simulation of thermal statistical states on a superconducting quantum processer
Xue-Yi Guo(郭学仪), Shang-Shu Li(李尚书), Xiao Xiao(效骁), Zhong-Cheng Xiang(相忠诚), Zi-Yong Ge(葛自勇), He-Kang Li(李贺康), Peng-Tao Song(宋鹏涛), Yi Peng(彭益), Zhan Wang(王战), Kai Xu(许凯), Pan Zhang(张潘), Lei Wang(王磊), Dong-Ning Zheng(郑东宁), and Heng Fan(范桁). Chin. Phys. B, 2023, 32(1): 010307.
[15] Skyrmion-based logic gates controlled by electric currents in synthetic antiferromagnet
Linlin Li(李林霖), Jia Luo(罗佳), Jing Xia(夏静), Yan Zhou(周艳), Xiaoxi Liu(刘小晰), and Guoping Zhao(赵国平). Chin. Phys. B, 2023, 32(1): 017506.
No Suggested Reading articles found!