Please wait a minute...
Chin. Phys. B, 2016, Vol. 25(4): 047306    DOI: 10.1088/1674-1056/25/4/047306
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES Prev   Next  

Numerical simulation of the magnetoresistance effect controlled by electric field in p-n junction

Pan Yang(杨盼), Wen-Jie Chen(谌文杰), Jiao Wang(王娇), Zhao-Wen Yan(闫兆文), Jian-Li Qiao(乔坚栗), Tong Xiao(肖彤), Xin Wang(王欣), Zheng-Peng Pang(庞正鹏), Jian-Hong Yang(杨建红)
Institute of Microelectronics, School of Physical Science and Technology, Lanzhou University, Lanzhou 730000, China
Abstract  The magnetoresistance effect of a p-n junction under an electric field which is introduced by the gate voltage at room temperature is investigated by simulation. As auxiliary models, the Lombardi CVT model and carrier generation-recombination model are introduced into a drift-diffusion transport model and carrier continuity equations. All the equations are discretized by the finite-difference method and the box integration method and then solved by Newton iteration. Taking advantage of those models and methods, an abrupt junction with uniform doping is studied systematically, and the magnetoresistance as a function of doping concentration, SiO2 thickness and geometrical size is also investigated. The simulation results show that the magnetoresistance (MR) can be controlled substantially by the gate and is dependent on the polarity of the magnetic field.
Keywords:  magnetoresistance      p-n junction      newton iteration  
Received:  23 September 2015      Revised:  07 December 2015      Accepted manuscript online: 
PACS:  73.43.Qt (Magnetoresistance)  
  75.40.Mg (Numerical simulation studies)  
  02.60.Cb (Numerical simulation; solution of equations)  
Corresponding Authors:  Jian-Hong Yang     E-mail:  yangjh@lzu.edu.cn

Cite this article: 

Pan Yang(杨盼), Wen-Jie Chen(谌文杰), Jiao Wang(王娇), Zhao-Wen Yan(闫兆文), Jian-Li Qiao(乔坚栗), Tong Xiao(肖彤), Xin Wang(王欣), Zheng-Peng Pang(庞正鹏), Jian-Hong Yang(杨建红) Numerical simulation of the magnetoresistance effect controlled by electric field in p-n junction 2016 Chin. Phys. B 25 047306

[1] Yang D Z, Wang F C, Ren Y, Zuo Y L, Peng Y, Zhou S M and Xue D S 2013 Adv. Funct. Mater. 23 2918
[2] Sun Z G, Mizuguchi M, Manago T and Akinaga H 2004 Appl. Phys. Lett. 85 5643
[3] Zhao J J, Lu Y, Haosibayar, Ru X, Yang R F, Li Q A, Sun Y and Cheng Z H 2008 Chin. Phys. B 17 2717
[4] Liu W, Liu X H, Cui W B, Gong W J and Zhang Z D 2013 Chin. Phys. B 22 027104
[5] Lu J D, Hou Y L, Xiong Z Z, Hou T P and Wei R 2008 Microelectronics Journal 39 1576
[6] Luo Z C, Zhang X Z, Xiong C Y and Chen J J 2015 Adv. Funct. Mater. 25 158
[7] Joo S, Kim T, Shin S H, Lim J Y, Hong J, Song J D, Chang J, Lee H W, Rhie K, Han S H, Shin K H and Johnson M 2013 Nature 494 72
[8] Appelbaum I, Huang B Q and Monsma D J 2007 Nature 447 295
[9] van't Erve O M J, Hanbicki A T, Holub M, Li C H, Affouda C and Thompson P E 2007 Appl. Phys. Lett. 91 212109
[10] Michael P Delmo, Shinpei Yamamoto, Shinpei Kasai, Teruo Ono and Kensuke Kobayashi 2009 Nature 457 1112
[11] Schoonus J J H M, Haazen P P J, Swagten H J M and Koopmans B 2009 J. Phys. D: Appl. Phys. 42 185011
[12] Schoonus J J H M, Bloom F L, Wagemans W and Swagten H J M and Koopmans B 2008 Phys. Rev. Lett. 100 127202
[13] Wan C H, Zhang X Z, Gao X L, Wang J M and Tan X Y 2011 Nature 477 304
[14] Shockley W 1949 Bell Syst. Tech. J. 28 435
[15] Andor L, Henry P B, Nathan A and Schmidt-Weinmar H G 1985 IEEE Trans. Electron Dev. ED-32 1224
[16] Walter Allegretto, Arokia Nathan and Henry Baltes 1991 IEEE Trans. Comput.-aided Design 10 501
[17] Claudio Lombardi, Stefano Manzini, Antonio Saporito and Massimo Vanzi 1988 IEEE Trans. Comput.-aided Design 7 1164
[18] Shockley W and W T 1952 Read Phys. Rev. 87 835
[19] Hall R N 1952 Phys. Rev. 87 387
[20] Grove A S 1967 Physics and Technology of Semiconductor Devices (New York: Wiley)
[21] Kramer K M and Hitchon W N 1997 Semiconductor Devices: a Simulation Approach (Prentice Hall PTR, 1997)
[1] Recent progress on the planar Hall effect in quantum materials
Jingyuan Zhong(钟景元), Jincheng Zhuang(庄金呈), and Yi Du(杜轶). Chin. Phys. B, 2023, 32(4): 047203.
[2] Abnormal magnetoresistance effect in the Nb/Si superconductor-semiconductor heterojunction
Zhi-Wei Hu(胡志伟) and Xiang-Gang Qiu(邱祥冈). Chin. Phys. B, 2023, 32(3): 037401.
[3] Measurement of T wave in magnetocardiography using tunnel magnetoresistance sensor
Zhihong Lu(陆知宏), Shuai Ji(纪帅), and Jianzhong Yang(杨建中). Chin. Phys. B, 2023, 32(2): 020703.
[4] Strain-mediated magnetoelectric control of tunneling magnetoresistance in magnetic tunneling junction/ferroelectric hybrid structures
Wenyu Huang(黄文宇), Cangmin Wang(王藏敏), Yichao Liu(刘艺超), Shaoting Wang(王绍庭), Weifeng Ge(葛威锋), Huaili Qiu(仇怀利), Yuanjun Yang(杨远俊), Ting Zhang(张霆), Hui Zhang(张汇), and Chen Gao(高琛). Chin. Phys. B, 2022, 31(9): 097502.
[5] Analytical formula describing the non-saturating linear magnetoresistance in inhomogeneous conductors
Shan-Shan Chen(陈珊珊), Yang Yang(杨阳), and Fan Yang(杨帆). Chin. Phys. B, 2022, 31(8): 087303.
[6] Spin transport in epitaxial Fe3O4/GaAs lateral structured devices
Zhaocong Huang(黄兆聪), Wenqing Liu(刘文卿), Jian Liang(梁健), Qingjie Guo(郭庆杰), Ya Zhai(翟亚), and Yongbing Xu(徐永兵). Chin. Phys. B, 2022, 31(6): 068505.
[7] Maximum entropy mobility spectrum analysis for the type-I Weyl semimetal TaAs
Wen-Chong Li(李文充), Ling-Xiao Zhao(赵凌霄), Hai-Jun Zhao(赵海军),Gen-Fu Chen(陈根富), and Zhi-Xiang Shi(施智祥). Chin. Phys. B, 2022, 31(5): 057103.
[8] Magnetoresistance effect in vertical NiFe/graphene/NiFe junctions
Pei-Sen Li(李裴森), Jun-Ping Peng(彭俊平), Yue-Guo Hu(胡悦国), Yan-Rui Guo(郭颜瑞), Wei-Cheng Qiu(邱伟成), Rui-Nan Wu(吴瑞楠), Meng-Chun Pan(潘孟春), Jia-Fei Hu(胡佳飞), Di-Xiang Chen(陈棣湘), and Qi Zhang(张琦). Chin. Phys. B, 2022, 31(3): 038502.
[9] Large positive magnetoresistance in photocarrier-doped potassium tantalites
Rui-Shu Yang(杨睿姝), Ding-Bang Wang(王定邦), Yang Zhao(赵阳), Shuan-Hu Wang(王拴虎), and Ke-Xin Jin(金克新). Chin. Phys. B, 2022, 31(12): 127302.
[10] Observation of quadratic magnetoresistance in twisted double bilayer graphene
Yanbang Chu(褚衍邦), Le Liu(刘乐), Yiru Ji(季怡汝), Jinpeng Tian(田金朋), Fanfan Wu(吴帆帆), Jian Tang(汤建), Yalong Yuan(袁亚龙), Yanchong Zhao(赵岩翀), Xiaozhou Zan(昝晓州), Rong Yang(杨蓉), Kenji Watanabe, Takashi Taniguchi, Dongxia Shi(时东霞), Wei Yang(杨威), and Guangyu Zhang(张广宇). Chin. Phys. B, 2022, 31(10): 107201.
[11] Sign reversal of anisotropic magnetoresistance and anomalous thickness-dependent resistivity in Sr2CrWO6/SrTiO3 films
Chunli Yao(姚春丽), Tingna Shao(邵婷娜), Mingrui Liu(刘明睿), Zitao Zhang(张子涛), Weimin Jiang(姜伟民), Qiang Zhao(赵强), Yujie Qiao(乔宇杰), Meihui Chen(陈美慧), Xingyu Chen(陈星宇), Ruifen Dou(窦瑞芬), Changmin Xiong(熊昌民), and Jiacai Nie(聂家财). Chin. Phys. B, 2022, 31(10): 107302.
[12] Probing the magnetization switching with in-plane magnetic anisotropy through field-modified magnetoresistance measurement
Runrun Hao(郝润润), Kun Zhang(张昆), Yinggang Li(李迎港), Qiang Cao(曹强), Xueying Zhang(张学莹), Dapeng Zhu(朱大鹏), and Weisheng Zhao(赵巍胜). Chin. Phys. B, 2022, 31(1): 017502.
[13] Negative tunnel magnetoresistance in a quantum dot induced by interplay of a Majorana fermion and thermal-driven ferromagnetic leads
Peng-Bin Niu(牛鹏斌), Bo-Xiang Cui(崔博翔), and Hong-Gang Luo(罗洪刚). Chin. Phys. B, 2021, 30(9): 097401.
[14] Current-dependent positive magnetoresistance inLa0.8Ba0.2MnO3 ultrathin films
Guankai Lin(林冠凯), Haoru Wang(王昊儒), Xuhui Cai(蔡旭晖), Wei Tong(童伟), and Hong Zhu(朱弘). Chin. Phys. B, 2021, 30(9): 097502.
[15] Enhanced absorption process in the thin active region of GaAs based p-i-n structure
Chen Yue(岳琛), Xian-Sheng Tang(唐先胜), Yang-Feng Li(李阳锋), Wen-Qi Wang(王文奇), Xin-Xin Li(李欣欣), Jun-Yang Zhang(张珺玚), Zhen Deng(邓震), Chun-Hua Du(杜春花), Hai-Qiang Jia(贾海强), Wen-Xin Wang(王文新), Wei Lu(陆卫), Yang Jiang(江洋), and Hong Chen(陈弘). Chin. Phys. B, 2021, 30(9): 097803.
No Suggested Reading articles found!