|
|
Weakly interacting spinor Bose-Einstein condensates with three-dimensional spin-orbit coupling |
Shu-Wei Song(宋淑伟)1,2,3, Rui Sun(孙蕊)1,2,3, Hong Zhao(赵洪)1,2,3, Xuan Wang(王暄)1,2,3, Bao-Zhong Han(韩宝忠)1,2,3 |
1 State Key Laboratory Breeding Base of Dielectrics Engineering, Harbin University of Science and Technology, Harbin 150080, China;
2 Key Laboratory of Engineering Dielectrics and Its Application, Ministry of Education, Harbin University of Science and Technology, Harbin 150080, China;
3 College of Electrical and Electronic Engineering, Harbin University of Science and Technology, Harbin 150080, China |
|
|
Abstract Starting from the Hamiltonian of the second quantization form, the weakly interacting Bose-Einstein condensate with spin-orbit coupling of Weyl type is investigated. It is found that the SU(2) nonsymmetric term, i.e., the spin-dependent interaction, can lift the degeneracy of the ground states with respect to the z component of the total angular momentum Jz, casting the ground condensate state into a configuration of zero Jz. This ground state density profile can also be affirmed by minimizing the full Gross-Pitaevskii energy functional. The spin texture of the zero Jz state indicates that it is a knot structure, whose fundamental group is π3(M)π3(S2)=Z.
|
Received: 06 November 2015
Revised: 16 December 2015
Accepted manuscript online:
|
PACS:
|
03.75.Lm
|
(Tunneling, Josephson effect, Bose-Einstein condensates in periodic potentials, solitons, vortices, and topological excitations)
|
|
03.75.Mn
|
(Multicomponent condensates; spinor condensates)
|
|
67.85.Fg
|
(Multicomponent condensates; spinor condensates)
|
|
67.85.Jk
|
(Other Bose-Einstein condensation phenomena)
|
|
Fund: Project supported by the National Natural Science Foundation of China (Grant No. 11447178). |
Corresponding Authors:
Shu-Wei Song
E-mail: japical@live.cn
|
Cite this article:
Shu-Wei Song(宋淑伟), Rui Sun(孙蕊), Hong Zhao(赵洪), Xuan Wang(王暄), Bao-Zhong Han(韩宝忠) Weakly interacting spinor Bose-Einstein condensates with three-dimensional spin-orbit coupling 2016 Chin. Phys. B 25 040305
|
[1] |
Wu C J, Ian M S and Zhou X F 2008 arXiv: 0809.3532
|
[2] |
Lin Y J, compton R L, Perry A R, Phillips W D, Porto J V and Spielman I B 2009 Phys. Rev. Lett. 102 130401
|
[3] |
Zhai H 2012 Int. J. Mod. Phys. B 26 1230001
|
[4] |
Zhou X, Li Y, Cai Z and Wu C 2013 J. Phys. B: At. Mol. Opt. Phys. 46 134001
|
[5] |
Song S W, Zhang Y C, Wen L and Wang H 2013 J. Phys. B: At. Mol. Opt. Phys. 46 145304
|
[6] |
Su S W, Guo S C, Liu I K, et al. 2015 New J. Phys. 17 033045
|
[7] |
Su S W, Liu I K, Tsai Y C, Liu W M and Gou S C 2012 Phys. Rev. A 86 023601
|
[8] |
Aidelsburger M, Atala M, Nascimbene S, Trotzky S, Chen Y A and Bloch I 2011 Phys. Rev. Lett. 107 255301
|
[9] |
Fu Z, Wang P, Chai S, Huang L and Zhang J 2011 Phys. Rev. A 84 043609
|
[10] |
Campbell D L, Juzeliunas G and Spielman I B 2011 Phys. Rev. A 84 025602
|
[11] |
Cheuk L W, Sommer A T, Hadzibabic Z, Yefsah T, Bakr W S and Zwierlein M W 2012 Phys. Rev. Lett. 109 095302
|
[12] |
Wang P, Yu Z Q, Fu Z, Miao J, Huang L, Chai S, Zhai H and Zhang J 2012 Phys. Rev. Lett. 109 095301
|
[13] |
Zhang Y C, Song S W, Liu C F and Liu W M 2013 Phys. Rev. A 87 023612
|
[14] |
Liao R, Huang Z G, Lin X M and Liu W M 2013 Phys. Rev. A 87 043605
|
[15] |
Zhu G B, Sun Q, Zhang Y Y, Chan K S, Liu W M and Ji A C 2013 Phys. Rev. A 88 023608
|
[16] |
Zhang S S, Yu X L, Ye J and Liu W M 2013 Phys. Rev. A 87 063623
|
[17] |
Chen G P 2015 Acta Phys. Sin. 64 030302 (in Chinese)
|
[18] |
Bao C G, Xie W F and He Y Z 2015 Chin. Phys. B 24 060305
|
[19] |
Beeler M C, Williams R A, Jiménez-García K, LeBlanc L J, Perry A R and Spielman I B 2013 Nature 498 201
|
[20] |
Liu X J, Jiang L, Pu H and Hu H 2012 Phys. Rev. A 85 021603
|
[21] |
Liu X J and Hu H 2012 Phys. Rev. A 85 033622
|
[22] |
Xu X Q and Han J H 2011 Phys. Rev. Lett. 107 200401
|
[23] |
Zhou X F, Zhou J and Wu C 2011 Phys. Rev. A 84 063624
|
[24] |
Radić J, Sedrakyan T, Spielman I B and Galitski V 2011 Phys. Rev. A 84 063604
|
[25] |
Merkl M, Jacob A, Zimmer F E, Ohberg P and Santos L 2010 Phys. Rev. Lett. 104 073603
|
[26] |
Zhang Y P, Mao L and Zhang C W 2012 Phys. Rev. Lett. 108 035302
|
[27] |
Deng Y, Cheng J, Jing H, Sun C P and Yi S 2012 Phys. Rev. Lett. 108 125301
|
[28] |
Hu H, Ramachandhran B, Pu H and Liu X J 2012 Phys. Rev. Lett. 108 010402
|
[29] |
Song S W, Zhang Y C, Zhao H, Wang X and Liu W M 2014 Phys. Rev. A 89 063613
|
[30] |
Kawakami T, Mizushima T, Nitta M and Machida K 2012 Phys. Rev. Lett. 109 015301
|
[31] |
Li Y, Zhou X F and Wu C J 2012 arXiv: 1205.2162
|
[32] |
Liu Y K and Yang S J 2015 Phys. Rev. A 91 043616
|
[33] |
Liu Y K and Yang S J 2014 Europhys. Lett. 108 30004
|
[34] |
Brandon M A and Charles W C 2013 J. Phys. B: At. Mol. Opt. Phys. 46 134003
|
[35] |
Bao W, Chern I L and Zhang Y 2013 J. Comput. Phys. 253 189
|
[36] |
Bao W and Cai Y 2015 SIAM J. Appl. Math. 75 492
|
[37] |
Wang H and Xu Z 2014 Comput. Phys. Commun. 185 2803
|
[38] |
Kobayashi M and Nitta M 2013 arXiv: 1304.6021v2
|
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|