|
|
Spin current in a spinor Bose-Einstein condensate induced by a gradient magnetic field |
Li Tian(田丽)1, Ningxuan Zheng(郑宁宣)1, Jun Jian(蹇君)3, Wenliang Liu(刘文良)1,2,†, Jizhou Wu(武寄洲)1,2,‡, Yuqing Li(李玉清)1,2, Yongming Fu(付永明)1, Peng Li(李鹏)1, Vladimir Sovkov1,4, Jie Ma(马杰)1,2, Liantuan Xiao(肖连团)1,2, and Suotang Jia(贾锁堂)1,2 |
1 State Key Laboratory of Quantum Optics and Quantum Optics Devices, Institute of Laser Spectroscopy, Shanxi University, Taiyuan 030006, China; 2 Collaborative Innovation Center of Extreme Optics, Shanxi University, Taiyuan 030006, China; 3 School of Science, Key Laboratory of High Performance Scientific Computation, Xihua University, Chengdu 610039, China; 4 St. Petersburg State University, 7/9 Universitetskaya nab., St. Petersburg 199034, Russia |
|
|
Abstract We develop a research of spin currents in a 23Na spinor Bose-Einstein condensate (BEC) by applying a magnetic field gradient. The spin current is successfully induced by the spin-dependent force arising from the magnetic field gradient. The dynamics of the spin components under the magnetic force is investigated. The study is promising to be extended to produce a longer spin-coherence and to enhance the sensitivity of the spin-mixing interferometry in a spinor BEC.
|
Received: 19 April 2022
Revised: 21 June 2022
Accepted manuscript online: 13 July 2022
|
PACS:
|
03.75.Mn
|
(Multicomponent condensates; spinor condensates)
|
|
67.10.Ba
|
(Boson degeneracy)
|
|
67.85.-d
|
(Ultracold gases, trapped gases)
|
|
Fund: Project supported by the National Key R&D Program of China (Grant No. 2017YFA0304203), the National Natural Science Foundation of China (Grant Nos. 62020106014, 62175140, 61901249, 92165106, 12104276, and 62011530047), PCSIRT (Grant No. IRT-17R70), the Educational Reform and Innovation Project of Higher Education in Shanxi Province, China (Grant Nos. Z20220001 and Z20220013), 111 Project (Grant No. D18001), the Applied Basic Research Project of Shanxi Province (Grant Nos. 201901D211191 and 201901D211188), and the Shanxi 1331 KSC. |
Corresponding Authors:
Wenliang Liu, Jizhou Wu
E-mail: Liuwl@sxu.edu.cn;wujz@sxu.edu.cn
|
Cite this article:
Li Tian(田丽), Ningxuan Zheng(郑宁宣), Jun Jian(蹇君), Wenliang Liu(刘文良), Jizhou Wu(武寄洲), Yuqing Li(李玉清), Yongming Fu(付永明), Peng Li(李鹏), Vladimir Sovkov, Jie Ma(马杰), Liantuan Xiao(肖连团), and Suotang Jia(贾锁堂) Spin current in a spinor Bose-Einstein condensate induced by a gradient magnetic field 2022 Chin. Phys. B 31 110302
|
[1] Stamper-Kurn D M and Ueda M 2013 Rev. Mod. Phys. 85 1191 [2] Becker C, Soltan-Panahi P, Kronjäer J, Döscher S, Bongs K and Sengstock K 2010 New J. Phys. 12 065025 [3] Yang S F, Zhou T W, Chen L, Yang K X, Zhai Y Y, Yue X G and Chen X Z 2020 Chin. Phys. Lett. 37 040301 [4] ?uti? I, Fabian J and Das Sarma S 2004 Rev. Mod. Phys. 76 323 [5] Leyder C, Romanelli M, Karr J P, Giacobino E, Liew T C H, Glazov M M, Kavokin A V, Malpuech G and Bramati A 2007 Nat. Phys. 3 628 [6] Almog I, Sagi Y, Gordon G, Bensky G, Kurizki G and Davidson N 2011 J. Phys. B 44 154006 [7] High A A, Hammack A T, Leonard J R, Yang S, Butov L V, Ostatnicky T, Vladimirova M, Kavokin A V, Liew T C H, Campman K L and Gossard A C 2013 Phys. Rev. Lett. 110 246403 [8] Lewandowski H J, Harber D M, Whitaker D L and Cornell E A 2002 Phys. Rev. Lett. 88 070403 [9] Du X, Luo L, Clancy B and Thomas J E 2008 Phys. Rev. Lett. 101 150401 [10] Du X, Zhang Y, Petricka J and Thomas J E 2009 Phys. Rev. Lett. 103 010401 [11] Beeler M C, Williams R A, Jiménez-García K, LeBlanc L J, Perry A R and Spielman I B 2013 Nature 498 201 [12] Lewandowski H J, Harber D M, Whitaker D L and Cornell E A 2002 Phys. Rev. Lett. 88 070403 [13] Du X, Luo L, Clancy B and Thomas J E 2008 Phys. Rev. Lett. 101 150401 [14] Li C H, Qu C L, Niffenegger R J, Wang S J, He M Y, Blasing D B, Olson A J, Greene C H, Lyanda-Geller Y, Zhou Q, Zhang C W and Chen Y P 2019 Nat. Commun. 10 375 [15] Viola L and Lloyd S 1998 Phys. Rev. A 58 2733 [16] Yujiro E, Mark S, Sho H, Hiroki S and Takuya H 2014 Phys. Rev. A 90 013626 [17] Solaro C, Bonnin A, Combes F, Lopez M, Alauze X, Fuchs J N, Piéchon F and Pereira Dos Santos F 2016 Phys. Rev. Lett. 117 163003 [18] Kotler S, Akerman N, Glickman Y and Ozeri R 2013 Phys. Rev. Lett. 110 110503 [19] Yang Y M, Xiao B, Ji W C, Wang X K, Dai H N, Chen Y A, Yuan Z S and Jiang X 2020 AIP Adv. 10 125207 [20] Xiao B, Wang X K, Zheng Y G, Yang Y M, Zhang W Y, Su G X, Li M D, Jiang X and Yuan Z S 2020 Chin. Phys. B 29 076701 [21] Chen X H, Wang H T, Liu H J, Wang C, Wei G S, Fang C, Wang H C, Geng C Y, Liu S J, Li P Y, Yu H M, Zhao W S, Miao J G, Li Y T, Wang L, Nie T X, Zhao J M and Wu X J 2022 Adv. Mater. 34 2106172 [22] Liu W L, Zheng N X, Wang X F, Xu J, Li Y Q, Sovkov V B, Li P, Fu Y M, Wu J Z, Ma J, Xiao L T and Jia S T 2021 J. Phys. B: At. Mol. Opt. Phys. 54 155501 [23] Zheng N X, Liu W L, Tang H, Li Y Q, Li P, Fu Y M, Wu J Z, Ma J, Zhang W X, Xiao L T and Jia S T 2021 Appl. Phys. Lett. 119 164001 [24] Hopkins S A, Butler K, Guttridge A, Kemp S, Freytag R, Hinds E A, TarbuttM R and Cornish S L 2016 Rev. Sci. Instrum. 87 043109 [25] Luo L, Clancy B, Joseph J, Kinast J, Turlapov A and Thomas J E 2006 New J. Phys. 8 213 |
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|