Please wait a minute...
Chin. Phys. B, 2016, Vol. 25(3): 037305    DOI: 10.1088/1674-1056/25/3/037305
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES Prev   Next  

Theoretical investigation of structural and optical properties of semi-fluorinated bilayer graphene

Xiao-Jiao San(伞晓娇)1, Bai Han(韩柏)2,3, Jing-Geng Zhao(赵景庚)1
1. Natural Science Research Center, Academy of Fundamental and Interdisciplinary Sciences, Harbin Institute of Technology, Harbin 150080, China;
2. Key Laboratory of Engineering Dielectrics and Its Application, Ministry of Education, Harbin University of Science and Technology, Harbin 150080, China;
3. College of Electrical & Electronic Engineer, Harbin 150080, China
Abstract  We have studied the structural and optical properties of semi-fluorinated bilayer graphene using density functional theory. When the interlayer distance is 1.62 Å, the two graphene layers in AA stacking can form strong chemical bonds. Under an in-plane stress of 6.8 GPa, this semi-fluorinated bilayer graphene becomes the energy minimum. Our calculations indicate that the semi-fluorinated bilayer graphene with the AA stacking sequence and rectangular fluorinated configuration is a nonmagnetic semiconductor (direct gap of 3.46 eV). The electronic behavior at the vicinity of the Fermi level is mainly contributed by the p electrons of carbon atoms forming C=C double bonds. We compare the optical properties of the semi-fluorinated bilayer graphene with those of bilayer graphene stacked in the AA sequence and find that the semi-fluorinated bilayer graphene is anisotropic for the polarization vector on the basal plane of graphene and a red shift occurs in the [010] polarization, which makes the peak at the low-frequency region located within visible light. This investigation is useful to design polarization-dependence optoelectronic devices.
Keywords:  bilayer graphene      fluorinated configuration      optical properties      density functional theory  
Received:  25 May 2015      Revised:  23 September 2015      Accepted manuscript online: 
PACS:  73.22.Pr (Electronic structure of graphene)  
  78.67.Wj (Optical properties of graphene)  
  63.22.Rc (Phonons in graphene)  
  71.15.Mb (Density functional theory, local density approximation, gradient and other corrections)  
Fund: Project supported by the Program of Educational Commission of Heilongjiang Province, China (Grant No. 12541131).
Corresponding Authors:  Xiao-Jiao San     E-mail:  sanxj@hit.edu.cn

Cite this article: 

Xiao-Jiao San(伞晓娇), Bai Han(韩柏), Jing-Geng Zhao(赵景庚) Theoretical investigation of structural and optical properties of semi-fluorinated bilayer graphene 2016 Chin. Phys. B 25 037305

[1] Novoselov K S, Geim A K, Morozov A K, Jiang D, Zhang Y, Dubonos S V, Grigorieva I V and Firsov A A 2004 Science 306 666
[2] Novoselov K S, Jiang D, Schedin F, Booth T J, Khotkevich V V, Morozov S V and Geim A K 2005 Proc. Natl. Acad. Sci. USA 102 10451
[3] Geim A K and Novoselov K S 2007 Nat. Mater. 6 183
[4] Avouris P, Chen Z and Perebeinos V 2007 Nat. Nanotechnol. 2 605
[5] Geim A K 2009 Science 324 1530
[6] Zhao Y, Tang T T, Girit C, Zhao H, Martin M C, Zettl A, Crommie M F, Shen Y R and Wang F 2009 Nature 459 820
[7] Castro E V, Novoselov K S, Morozov S V, Peres N M R, Santos J Dos, Nilsson J, Guinea F, Geim A K and Neto A H C 2007 Phys. Rev. Lett. 99 216802
[8] Ribeiro R M, Peres N M R, Coutinho J and Briddon P R 2008 Phys. Rev. B 78 075442
[9] Boukhvalov D W and Katsnelson M I 2008 Phys. Rev. B 78 085413
[10] Zanella I, Guerini S, Fagan S B, Mendes J and Souza A G 2008 Phys. Rev. B 77 073404
[11] Gui G, Li J and Zhong J X 2008 Phys. Rev. B 78 075435
[12] Boukhvalov D W, Katsnelson M I and Lichtenstein A I 2008 Phys. Rev. B 77 035427
[13] Sofo J O, Chaudhari A S and Barber G D 2007 Phys. Rev. B 75 153401
[14] Lebegue S, Klintenberg M, Eriksson O and Katsnelson M I 2009 Phys. Rev. B 79 245117
[15] Elias D C, Nair R R, Mohiuddin T M G, Morozov S V, Blake P, Halsall M P, Ferrari A C, Boukhvalov D W, Katsnelson M I, Geim A K and Novoselov K S 2009 Science 323 610
[16] Gao H, Wang L, Zhao J, Ding F and Lu J 2011 J. Phys. Chem. C 115 3236
[17] Feng L and Zhang W X 2012 AIP Advances 2 042138
[18] Yan J, Xian L and Chou M Y 2009 Phys. Rev. Lett. 103 086802
[19] Jung I, Dikin D A, Piner R D and Ruoff R S 2008 Nano Lett. 8 4283
[20] Jeong H K, Jin M H, So K P, Lim S C and Lee Y H 2009 J. Phys. D: Appl. Phys. 42 065418
[21] Luo Z, Vora P M, Mele E J, Johnson A T C and Kikkawa J M 2009 Appl. Phys. Lett. 94 111909
[22] Lu Y H, Chen W, Feng Y P and He P M 2009 J. Phys. Chem. B 113 2
[23] Lu N, Li Z Y and Yang J L 2009 J. Phys. Chem. C 113 16741
[24] Samarakoon D K and Wang X Q 2010 ACS Nano 4 4126
[25] Hu B 2015 Chin. Phys. B 24 087101
[26] Worasak P and Bumned S 2015 Chin. Phys. B 24 048101
[27] Zhou J, Wang Q, Sun Q and Lena P 2011 Appl. Phys. Lett. 98 063108
[28] Yuan S J, Rösner M, Schulz A, Wehling T O and Katsnelson M I 2015 Phys. Rev. Lett. 114 047403
[29] Nair R R, RenW, Jalil R, Riaz I, Kravets V G, Britnell L, Blake P, Schedin F, Mayorov A S, Yuan S, KatsnelsonMI, Cheng H M, StrupinskiW, Bulusheva L G, Okotrub A V, Grigorieva I V, Grigorenko A N, Novoselov K S and Geim A K 2010 Small 6 2877
[30] Robinson J T, Burgess J S, Junkermeier C E, Badescu S C, Reinecke T L, Perkins F K, Zalalutdniov M K, Baldwin J W, Culbertson J C, Sheehan P E and Snow E S 2010 Nano Lett. 10 3001
[31] Irmer S, Frank T, Putz S, Gmitra M, Kochan D and Fabian J 2015 Phys. Rev. B 91 115141
[32] Şahin H, Topsakal M and Ciraci S 2011 Phys. Rev. B 83 115432
[33] Zhou J, Wang Q, Sun Q and Jena P 2010 Phys. Rev. B 81 085442
[34] Zhou J, Wu M M, Zhou X and Sun Q 2009 Appl. Phys. Lett. 95 103108
[35] Balog R, Jorgensen B, Nilsson L, Andersen M, Rienks E, Bianchi M, Fanetti M, Lægsgaard E, Baraldi A, Lizzit S, Sljivancanin Z, Basenbacher F, Hammer B, Pedersen T G, Hofmann P and Hornekær L 2010 Nat. Mater. 9 315
[36] Zhou J, Wang Q, Sun Q, Chen X S, Kawazoe Y and Jena P 2009 Nano Lett. 9 3867
[37] Liu Z, Suenaga K, Harris P J F and Iijima S 2009 Phys. Rev. Lett. 102 015501
[38] Borysiuk J, Soltys J and Piechota J 2011 J. Appl. Phys. 109 093523
[39] Rakhmanov A L, Rozhkov A V, Sboychakov A O and Nori F 2012 Phys. Rev. Lett. 109 206801
[40] Sboychakov A O, Rozhkov A V, Rakhmanov A L and Nori F 2013 Phys. Rev. B 88 045409
[41] de Andres P L, Ramírez R and Vergés J A 2008 Phys. Rev. B 77 045403
[42] de Andres P L, Guinea F and Katsnelson M I 2012 Phys. Rev. B 86 245409
[43] Segall M D, Lindan P J D, Probert M J, Pickard C J, Hasnip P J, Clark S J and Payne M C 2002 J. Phys.: Condens. Matter 14 2717
[44] Perdew J P, Burke K and Ernzerhof M 1996 Phys. Rev. Lett. 77 3865
[45] Delley B 2010 J. Phys.: Condens. Matter 22 384208
[46] Heyd J, Scuseria G E and Ernzerhof M 2003 J. Chem. Phys. 118 8207
[47] Ming W M, Blair S and Liu F 2014 J. Phys.: Condens. Matter 26 505302
[48] Yang L, Deslippe J, Park C H, Cohen M L and Louie S G 2009 Phys. Rev. Lett. 103 186802
[49] Yang L 2011 Nano Lett. 11 3844
[1] Predicting novel atomic structure of the lowest-energy FenP13-n(n=0-13) clusters: A new parameter for characterizing chemical stability
Yuanqi Jiang(蒋元祺), Ping Peng(彭平). Chin. Phys. B, 2023, 32(4): 047102.
[2] A theoretical study of fragmentation dynamics of water dimer by proton impact
Zhi-Ping Wang(王志萍), Xue-Fen Xu(许雪芬), Feng-Shou Zhang(张丰收), and Xu Wang(王旭). Chin. Phys. B, 2023, 32(3): 033401.
[3] Plasmonic hybridization properties in polyenes octatetraene molecules based on theoretical computation
Nan Gao(高楠), Guodong Zhu(朱国栋), Yingzhou Huang(黄映洲), and Yurui Fang(方蔚瑞). Chin. Phys. B, 2023, 32(3): 037102.
[4] Ferroelectricity induced by the absorption of water molecules on double helix SnIP
Dan Liu(刘聃), Ran Wei(魏冉), Lin Han(韩琳), Chen Zhu(朱琛), and Shuai Dong(董帅). Chin. Phys. B, 2023, 32(3): 037701.
[5] Effects of π-conjugation-substitution on ESIPT process for oxazoline-substituted hydroxyfluorenes
Di Wang(汪迪), Qiao Zhou(周悄), Qiang Wei(魏强), and Peng Song(宋朋). Chin. Phys. B, 2023, 32(2): 028201.
[6] High-order harmonic generation of the cyclo[18]carbon molecule irradiated by circularly polarized laser pulse
Shu-Shan Zhou(周书山), Yu-Jun Yang(杨玉军), Yang Yang(杨扬), Ming-Yue Suo(索明月), Dong-Yuan Li(李东垣), Yue Qiao(乔月), Hai-Ying Yuan(袁海颖), Wen-Di Lan(蓝文迪), and Mu-Hong Hu(胡木宏). Chin. Phys. B, 2023, 32(1): 013201.
[7] Optical and electrical properties of BaSnO3 and In2O3 mixed transparent conductive films deposited by filtered cathodic vacuum arc technique at room temperature
Jian-Ke Yao(姚建可) and Wen-Sen Zhong(钟文森). Chin. Phys. B, 2023, 32(1): 018101.
[8] First-principles study of a new BP2 two-dimensional material
Zhizheng Gu(顾志政), Shuang Yu(于爽), Zhirong Xu(徐知荣), Qi Wang(王琪), Tianxiang Duan(段天祥), Xinxin Wang(王鑫鑫), Shijie Liu(刘世杰), Hui Wang(王辉), and Hui Du(杜慧). Chin. Phys. B, 2022, 31(8): 086107.
[9] Adaptive semi-empirical model for non-contact atomic force microscopy
Xi Chen(陈曦), Jun-Kai Tong(童君开), and Zhi-Xin Hu(胡智鑫). Chin. Phys. B, 2022, 31(8): 088202.
[10] Collision site effect on the radiation dynamics of cytosine induced by proton
Xu Wang(王旭), Zhi-Ping Wang(王志萍), Feng-Shou Zhang(张丰收), and Chao-Yi Qian (钱超义). Chin. Phys. B, 2022, 31(6): 063401.
[11] First principles investigation on Li or Sn codoped hexagonal tungsten bronzes as the near-infrared shielding material
Bo-Shen Zhou(周博深), Hao-Ran Gao(高浩然), Yu-Chen Liu(刘雨辰), Zi-Mu Li(李子木),Yang-Yang Huang(黄阳阳), Fu-Chun Liu(刘福春), and Xiao-Chun Wang(王晓春). Chin. Phys. B, 2022, 31(5): 057804.
[12] Laser-induced fluorescence experimental spectroscopy and theoretical calculations of uranium monoxide
Xi-Lin Bai(白西林), Xue-Dong Zhang(张雪东), Fu-Qiang Zhang(张富强), and Timothy C Steimle. Chin. Phys. B, 2022, 31(5): 053301.
[13] Tunable electronic properties of GaS-SnS2 heterostructure by strain and electric field
Da-Hua Ren(任达华), Qiang Li(李强), Kai Qian(钱楷), and Xing-Yi Tan(谭兴毅). Chin. Phys. B, 2022, 31(4): 047102.
[14] Insights into the adsorption of water and oxygen on the cubic CsPbBr3 surfaces: A first-principles study
Xin Zhang(张鑫), Ruge Quhe(屈贺如歌), and Ming Lei(雷鸣). Chin. Phys. B, 2022, 31(4): 046401.
[15] Nonlinear optical properties in n-type quadruple δ-doped GaAs quantum wells
Humberto Noverola-Gamas, Luis Manuel Gaggero-Sager, and Outmane Oubram. Chin. Phys. B, 2022, 31(4): 044203.
No Suggested Reading articles found!