CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES |
Prev
Next
|
|
|
Theoretical investigation of structural and optical properties of semi-fluorinated bilayer graphene |
Xiao-Jiao San(伞晓娇)1, Bai Han(韩柏)2,3, Jing-Geng Zhao(赵景庚)1 |
1. Natural Science Research Center, Academy of Fundamental and Interdisciplinary Sciences, Harbin Institute of Technology, Harbin 150080, China; 2. Key Laboratory of Engineering Dielectrics and Its Application, Ministry of Education, Harbin University of Science and Technology, Harbin 150080, China; 3. College of Electrical & Electronic Engineer, Harbin 150080, China |
|
|
Abstract We have studied the structural and optical properties of semi-fluorinated bilayer graphene using density functional theory. When the interlayer distance is 1.62 Å, the two graphene layers in AA stacking can form strong chemical bonds. Under an in-plane stress of 6.8 GPa, this semi-fluorinated bilayer graphene becomes the energy minimum. Our calculations indicate that the semi-fluorinated bilayer graphene with the AA stacking sequence and rectangular fluorinated configuration is a nonmagnetic semiconductor (direct gap of 3.46 eV). The electronic behavior at the vicinity of the Fermi level is mainly contributed by the p electrons of carbon atoms forming C=C double bonds. We compare the optical properties of the semi-fluorinated bilayer graphene with those of bilayer graphene stacked in the AA sequence and find that the semi-fluorinated bilayer graphene is anisotropic for the polarization vector on the basal plane of graphene and a red shift occurs in the [010] polarization, which makes the peak at the low-frequency region located within visible light. This investigation is useful to design polarization-dependence optoelectronic devices.
|
Received: 25 May 2015
Revised: 23 September 2015
Accepted manuscript online:
|
PACS:
|
73.22.Pr
|
(Electronic structure of graphene)
|
|
78.67.Wj
|
(Optical properties of graphene)
|
|
63.22.Rc
|
(Phonons in graphene)
|
|
71.15.Mb
|
(Density functional theory, local density approximation, gradient and other corrections)
|
|
Fund: Project supported by the Program of Educational Commission of Heilongjiang Province, China (Grant No. 12541131). |
Corresponding Authors:
Xiao-Jiao San
E-mail: sanxj@hit.edu.cn
|
Cite this article:
Xiao-Jiao San(伞晓娇), Bai Han(韩柏), Jing-Geng Zhao(赵景庚) Theoretical investigation of structural and optical properties of semi-fluorinated bilayer graphene 2016 Chin. Phys. B 25 037305
|
[1] |
Novoselov K S, Geim A K, Morozov A K, Jiang D, Zhang Y, Dubonos S V, Grigorieva I V and Firsov A A 2004 Science 306 666
|
[2] |
Novoselov K S, Jiang D, Schedin F, Booth T J, Khotkevich V V, Morozov S V and Geim A K 2005 Proc. Natl. Acad. Sci. USA 102 10451
|
[3] |
Geim A K and Novoselov K S 2007 Nat. Mater. 6 183
|
[4] |
Avouris P, Chen Z and Perebeinos V 2007 Nat. Nanotechnol. 2 605
|
[5] |
Geim A K 2009 Science 324 1530
|
[6] |
Zhao Y, Tang T T, Girit C, Zhao H, Martin M C, Zettl A, Crommie M F, Shen Y R and Wang F 2009 Nature 459 820
|
[7] |
Castro E V, Novoselov K S, Morozov S V, Peres N M R, Santos J Dos, Nilsson J, Guinea F, Geim A K and Neto A H C 2007 Phys. Rev. Lett. 99 216802
|
[8] |
Ribeiro R M, Peres N M R, Coutinho J and Briddon P R 2008 Phys. Rev. B 78 075442
|
[9] |
Boukhvalov D W and Katsnelson M I 2008 Phys. Rev. B 78 085413
|
[10] |
Zanella I, Guerini S, Fagan S B, Mendes J and Souza A G 2008 Phys. Rev. B 77 073404
|
[11] |
Gui G, Li J and Zhong J X 2008 Phys. Rev. B 78 075435
|
[12] |
Boukhvalov D W, Katsnelson M I and Lichtenstein A I 2008 Phys. Rev. B 77 035427
|
[13] |
Sofo J O, Chaudhari A S and Barber G D 2007 Phys. Rev. B 75 153401
|
[14] |
Lebegue S, Klintenberg M, Eriksson O and Katsnelson M I 2009 Phys. Rev. B 79 245117
|
[15] |
Elias D C, Nair R R, Mohiuddin T M G, Morozov S V, Blake P, Halsall M P, Ferrari A C, Boukhvalov D W, Katsnelson M I, Geim A K and Novoselov K S 2009 Science 323 610
|
[16] |
Gao H, Wang L, Zhao J, Ding F and Lu J 2011 J. Phys. Chem. C 115 3236
|
[17] |
Feng L and Zhang W X 2012 AIP Advances 2 042138
|
[18] |
Yan J, Xian L and Chou M Y 2009 Phys. Rev. Lett. 103 086802
|
[19] |
Jung I, Dikin D A, Piner R D and Ruoff R S 2008 Nano Lett. 8 4283
|
[20] |
Jeong H K, Jin M H, So K P, Lim S C and Lee Y H 2009 J. Phys. D: Appl. Phys. 42 065418
|
[21] |
Luo Z, Vora P M, Mele E J, Johnson A T C and Kikkawa J M 2009 Appl. Phys. Lett. 94 111909
|
[22] |
Lu Y H, Chen W, Feng Y P and He P M 2009 J. Phys. Chem. B 113 2
|
[23] |
Lu N, Li Z Y and Yang J L 2009 J. Phys. Chem. C 113 16741
|
[24] |
Samarakoon D K and Wang X Q 2010 ACS Nano 4 4126
|
[25] |
Hu B 2015 Chin. Phys. B 24 087101
|
[26] |
Worasak P and Bumned S 2015 Chin. Phys. B 24 048101
|
[27] |
Zhou J, Wang Q, Sun Q and Lena P 2011 Appl. Phys. Lett. 98 063108
|
[28] |
Yuan S J, Rösner M, Schulz A, Wehling T O and Katsnelson M I 2015 Phys. Rev. Lett. 114 047403
|
[29] |
Nair R R, RenW, Jalil R, Riaz I, Kravets V G, Britnell L, Blake P, Schedin F, Mayorov A S, Yuan S, KatsnelsonMI, Cheng H M, StrupinskiW, Bulusheva L G, Okotrub A V, Grigorieva I V, Grigorenko A N, Novoselov K S and Geim A K 2010 Small 6 2877
|
[30] |
Robinson J T, Burgess J S, Junkermeier C E, Badescu S C, Reinecke T L, Perkins F K, Zalalutdniov M K, Baldwin J W, Culbertson J C, Sheehan P E and Snow E S 2010 Nano Lett. 10 3001
|
[31] |
Irmer S, Frank T, Putz S, Gmitra M, Kochan D and Fabian J 2015 Phys. Rev. B 91 115141
|
[32] |
Şahin H, Topsakal M and Ciraci S 2011 Phys. Rev. B 83 115432
|
[33] |
Zhou J, Wang Q, Sun Q and Jena P 2010 Phys. Rev. B 81 085442
|
[34] |
Zhou J, Wu M M, Zhou X and Sun Q 2009 Appl. Phys. Lett. 95 103108
|
[35] |
Balog R, Jorgensen B, Nilsson L, Andersen M, Rienks E, Bianchi M, Fanetti M, Lægsgaard E, Baraldi A, Lizzit S, Sljivancanin Z, Basenbacher F, Hammer B, Pedersen T G, Hofmann P and Hornekær L 2010 Nat. Mater. 9 315
|
[36] |
Zhou J, Wang Q, Sun Q, Chen X S, Kawazoe Y and Jena P 2009 Nano Lett. 9 3867
|
[37] |
Liu Z, Suenaga K, Harris P J F and Iijima S 2009 Phys. Rev. Lett. 102 015501
|
[38] |
Borysiuk J, Soltys J and Piechota J 2011 J. Appl. Phys. 109 093523
|
[39] |
Rakhmanov A L, Rozhkov A V, Sboychakov A O and Nori F 2012 Phys. Rev. Lett. 109 206801
|
[40] |
Sboychakov A O, Rozhkov A V, Rakhmanov A L and Nori F 2013 Phys. Rev. B 88 045409
|
[41] |
de Andres P L, Ramírez R and Vergés J A 2008 Phys. Rev. B 77 045403
|
[42] |
de Andres P L, Guinea F and Katsnelson M I 2012 Phys. Rev. B 86 245409
|
[43] |
Segall M D, Lindan P J D, Probert M J, Pickard C J, Hasnip P J, Clark S J and Payne M C 2002 J. Phys.: Condens. Matter 14 2717
|
[44] |
Perdew J P, Burke K and Ernzerhof M 1996 Phys. Rev. Lett. 77 3865
|
[45] |
Delley B 2010 J. Phys.: Condens. Matter 22 384208
|
[46] |
Heyd J, Scuseria G E and Ernzerhof M 2003 J. Chem. Phys. 118 8207
|
[47] |
Ming W M, Blair S and Liu F 2014 J. Phys.: Condens. Matter 26 505302
|
[48] |
Yang L, Deslippe J, Park C H, Cohen M L and Louie S G 2009 Phys. Rev. Lett. 103 186802
|
[49] |
Yang L 2011 Nano Lett. 11 3844
|
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|