Please wait a minute...
Chin. Phys. B, 2016, Vol. 25(3): 034301    DOI: 10.1088/1674-1056/25/3/034301
Special Issue: Virtual Special Topic — Acoustics

Wave propagation in beams with anti-symmetric piezoelectric shunting arrays

Sheng-Bing Chen(陈圣兵)1, Gang Wang(王刚)2
1. China Aerodynamics Research and Development Center, Mianyang 621000, China;
2. State Key Laboratory of Advanced Design and Manufacturing for Vehicle Body, Hunan University, Changsha 410082, China
Abstract  Piezoelectric shunting arrays are employed to control the wave propagation in flexible beams. Contrary to conventional symmetric configuration, a substrate beam with anti-symmetric shunting arrays is investigated by adapted transfer matrix method. Compared with symmetric scheme, the anti-symmetric one demonstrates some distinctive characteristics. Primarily, the longitudinal and flexural waves are coupled, so they are correlated and must be considered simultaneously. Moreover, the attenuation of flexural wave is much stronger in anti-symmetric scenario, while the longitudinal wave demonstrates the converse side. As a result, the anti-symmetric scheme can be utilized to improve the vibration isolation capability of shunting arrays. Finally, the theoretical analyses are validated by finite element simulations.
Keywords:  piezoelectric shunting      metamaterial      phononic      band gaps  
Received:  12 July 2015      Revised:  04 September 2015      Accepted manuscript online: 
PACS:  43.20.Bi (Mathematical theory of wave propagation)  
  43.40.+s (Structural acoustics and vibration)  
  62.30.+d (Mechanical and elastic waves; vibrations)  
  77.65.-j (Piezoelectricity and electromechanical effects)  
Fund: Project supported by the National Natural Science Foundation of China (Grant No. 51322502).
Corresponding Authors:  Sheng-Bing Chen     E-mail:

Cite this article: 

Sheng-Bing Chen(陈圣兵), Gang Wang(王刚) Wave propagation in beams with anti-symmetric piezoelectric shunting arrays 2016 Chin. Phys. B 25 034301

[1] Mead D J 1970 J. Sound Vib. 11 181
[2] Mead D J 1986 J. Sound Vib. 104 9
[3] Mead D J and Markus S 1983 J. Sound Vib. 90 1
[4] Kushwaha M S, Halevi P, Dobrzynski L and Djafari-Rouhani B 1993 Phys. Rev. Lett. 71 2022
[5] Sigalas M 1998 J. Appl. Phys. 84 3026
[6] Liu Z, Zhang X, Mao Y, Zhu Y Y, Yang Z, Chan C T and Sheng P 2000 Science 289 1734
[7] Wang G, Wen X, Wen J, Shao L and Liu Y 2004 Phys. Rev. Lett. 93 154302
[8] Wen J H, Yu D L, Xiao Y and Wen X S 2009 Chin. Phys. B 18 2404
[9] Chen A L, Tong L and Wang Y S 2015 Chin. Phys. B 24 066101
[10] Huang P P, Yao Y W, Wu F G, Zhang X, Li J and Hu A Z 2015 Chin. Phys. B 24 054301
[11] Li J and Chan C T 2004 Phys. Rev. E 70 055602
[12] Fang N, Xi D, Xu J, Ambati M, Strituravanich W, Sun C and Zhang X 2006 Nat. Mater. 5 452
[13] Milton G W 2007 New J. Phys. 9 359
[14] Thorp O, Ruzzene M and Baz A 2001 Smart Mater. Struct. 10 979
[15] Airoldi L and Ruzzene M 2011 J. Intell. Mater. Syst. Struct. 10 979
[16] Airoldi L and Ruzzene M 2011 New J. Phys. 13 113010
[17] Chen S, Wen J, Wang G, Yu D and Wen X 2012 J. Intell. Mater. Syst. Struct. 23 1613
[18] Chen S, Wang G, Wen J and Wen X 2013 J. Sound Vib. 332 1520
[19] Wang G, Chen S and Wen J 2011 Smart Mater. Struct. 20 015026
[20] Chen S B, Wen J H, Yu D L, Wang G and Wen X S 2011 Chin. Phys. B 20 014301
[21] Chen S B, Wen J H, Wang G, Han X Y and Wen J H 2011 Chin. Phys. Lett. 28 094301
[22] Farzbod F and Leamy M J 2009 J. Sound Vib. 325 545
[1] A three-band perfect absorber based on a parallelogram metamaterial slab with monolayer MoS2
Wen-Jing Zhang(张雯婧), Qing-Song Liu(刘青松), Bo Cheng(程波), Ming-Hao Chao(晁明豪),Yun Xu(徐云), and Guo-Feng Song(宋国峰). Chin. Phys. B, 2023, 32(3): 034211.
[2] Tunable topological interface states and resonance states of surface waves based on the shape memory alloy
Shao-Yong Huo(霍绍勇), Long-Chao Yao(姚龙超), Kuan-Hong Hsieh(谢冠宏), Chun-Ming Fu(符纯明), Shih-Chia Chiu(邱士嘉), Xiao-Chao Gong(龚小超), and Jian Deng(邓健). Chin. Phys. B, 2023, 32(3): 034303.
[3] Generation of a blue-detuned optical storage ring by a metasurface and its application in optical trapping of cold molecules
Chen Ling(凌晨), Yaling Yin(尹亚玲), Yang Liu(刘泱), Lin Li(李林), and Yong Xia(夏勇). Chin. Phys. B, 2023, 32(2): 023301.
[4] Hydrodynamic metamaterials for flow manipulation: Functions and prospects
Bin Wang(王斌) and Jiping Huang (黄吉平). Chin. Phys. B, 2022, 31(9): 098101.
[5] Controlling acoustic orbital angular momentum with artificial structures: From physics to application
Wei Wang(王未), Jingjing Liu(刘京京), Bin Liang (梁彬), and Jianchun Cheng(程建春). Chin. Phys. B, 2022, 31(9): 094302.
[6] Direct measurement of two-qubit phononic entangled states via optomechanical interactions
A-Peng Liu(刘阿鹏), Liu-Yong Cheng(程留永), Qi Guo(郭奇), Shi-Lei Su(苏石磊), Hong-Fu Wang(王洪福), and Shou Zhang(张寿). Chin. Phys. B, 2022, 31(8): 080307.
[7] Collision enhanced hyper-damping in nonlinear elastic metamaterial
Miao Yu(于淼), Xin Fang(方鑫), Dianlong Yu(郁殿龙), Jihong Wen(温激鸿), and Li Cheng(成利). Chin. Phys. B, 2022, 31(6): 064303.
[8] Switchable terahertz polarization converter based on VO2 metamaterial
Haotian Du(杜皓天), Mingzhu Jiang(江明珠), Lizhen Zeng(曾丽珍), Longhui Zhang(张隆辉), Weilin Xu(徐卫林), Xiaowen Zhang(张小文), and Fangrong Hu(胡放荣). Chin. Phys. B, 2022, 31(6): 064210.
[9] Dynamically controlled asymmetric transmission of linearly polarized waves in VO2-integrated Dirac semimetal metamaterials
Man Xu(许曼), Xiaona Yin(殷晓娜), Jingjing Huang(黄晶晶), Meng Liu(刘蒙), Huiyun Zhang(张会云), and Yuping Zhang(张玉萍). Chin. Phys. B, 2022, 31(6): 067802.
[10] Broadband low-frequency acoustic absorber based on metaporous composite
Jia-Hao Xu(徐家豪), Xing-Feng Zhu(朱兴凤), Di-Chao Chen(陈帝超), Qi Wei(魏琦), and Da-Jian Wu(吴大建). Chin. Phys. B, 2022, 31(6): 064301.
[11] Plasmon-induced transparency effect in hybrid terahertz metamaterials with active control and multi-dark modes
Yuting Zhang(张玉婷), Songyi Liu(刘嵩义), Wei Huang(黄巍), Erxiang Dong(董尔翔), Hongyang Li(李洪阳), Xintong Shi(石欣桐), Meng Liu(刘蒙), Wentao Zhang(张文涛), Shan Yin(银珊), and Zhongyue Luo(罗中岳). Chin. Phys. B, 2022, 31(6): 068702.
[12] Simulated and experimental studies of a multi-band symmetric metamaterial absorber with polarization independence for radar applications
Hema O. Ali, Asaad M. Al-Hindawi, Yadgar I. Abdulkarim, Ekasit Nugoolcharoenlap, Tossapol Tippo,Fatih Özkan Alkurt, Olcay Altıntaş, and Muharrem Karaaslan. Chin. Phys. B, 2022, 31(5): 058401.
[13] Erratum to “ Accurate GW0 band gaps and their phonon-induced renormalization in solids”
Tong Shen(申彤), Xiao-Wei Zhang(张小伟), Min-Ye Zhang(张旻烨), Hong Jiang(蒋鸿), and Xin-Zheng Li(李新征). Chin. Phys. B, 2022, 31(5): 059901.
[14] A flexible ultra-broadband metamaterial absorber working on whole K-bands with polarization-insensitive and wide-angle stability
Tao Wang(汪涛), He-He He(何贺贺), Meng-Di Ding(丁梦迪), Jian-Bo Mao(毛剑波), Ren Sun(孙韧), and Lei Sheng(盛磊). Chin. Phys. B, 2022, 31(3): 037804.
[15] A high-quality-factor ultra-narrowband perfect metamaterial absorber based on monolayer molybdenum disulfide
Liying Jiang(蒋黎英), Yingting Yi(易颖婷), Yijun Tang(唐轶峻), Zhiyou Li(李治友),Zao Yi(易早), Li Liu(刘莉), Xifang Chen(陈喜芳), Ronghua Jian(简荣华),Pinghui Wu(吴平辉), and Peiguang Yan(闫培光). Chin. Phys. B, 2022, 31(3): 038101.
No Suggested Reading articles found!