Not found Virtual Special Topic — Acoustics
    null

    Default Latest Most Read
    Please wait a minute...
    For selected: Toggle thumbnails
    Analysis of underwater decoupling properties of a locally resonant acoustic metamaterial coating
    Ling-Zhi Huang(黄凌志), Yong Xiao(肖勇), Ji-Hong Wen(温激鸿), Hai-Bin Yang(杨海滨), Xi-Sen Wen(温熙森)
    Chin. Phys. B, 2016, 25 (2): 024302.   DOI: 10.1088/1674-1056/25/2/024302
    Abstract658)   HTML    PDF (1246KB)(617)      
    This paper presents a semi-analytical solution for the vibration and sound radiation of a semi-infinite plate covered by a decoupling layer consisting of locally resonant acoustic metamaterial. Formulations are derived based on a combination use of effective medium theory and the theory of elasticity for the decoupling material. Theoretical results show good agreements between the method developed in this paper and the conventional finite element method (FEM), but the method of this paper is more efficient than FEM. Numerical results also show that system with acoustic metamaterial decoupling layer exhibits significant noise reduction performance at the local resonance frequency of the acoustic metamaterial, and such performance can be ascribed to the vibration suppression of the base plate. It is demonstrated that the effective density of acoustic metamaterial decoupling layer has a great influence on the mechanical impedance of the system. Furthermore, the resonance frequency of locally resonant structure can be effectively predicted by a simple model, and it can be significantly affected by the material properties of the locally resonant structure.
    Wave propagation in beams with anti-symmetric piezoelectric shunting arrays
    Sheng-Bing Chen(陈圣兵), Gang Wang(王刚)
    Chin. Phys. B, 2016, 25 (3): 034301.   DOI: 10.1088/1674-1056/25/3/034301
    Abstract636)   HTML    PDF (390KB)(396)      
    Piezoelectric shunting arrays are employed to control the wave propagation in flexible beams. Contrary to conventional symmetric configuration, a substrate beam with anti-symmetric shunting arrays is investigated by adapted transfer matrix method. Compared with symmetric scheme, the anti-symmetric one demonstrates some distinctive characteristics. Primarily, the longitudinal and flexural waves are coupled, so they are correlated and must be considered simultaneously. Moreover, the attenuation of flexural wave is much stronger in anti-symmetric scenario, while the longitudinal wave demonstrates the converse side. As a result, the anti-symmetric scheme can be utilized to improve the vibration isolation capability of shunting arrays. Finally, the theoretical analyses are validated by finite element simulations.
    Study of the temperature rise induced by a focusing transducer with a wide aperture angle on biological tissue containing ribs
    Xin Wang(王鑫), Jiexing Lin(林杰兴), Xiaozhou Liu(刘晓宙), Jiehui Liu(刘杰惠), Xiufen Gong(龚秀芬)
    Chin. Phys. B, 2016, 25 (4): 044301.   DOI: 10.1088/1674-1056/25/4/044301
    Abstract609)   HTML    PDF (595KB)(339)      

    We used the spheroidal beam equation to calculate the sound field created by focusing a transducer with a wide aperture angle to obtain the heat deposition, and then we used the Pennes bioheat equation to calculate the temperature field in biological tissue with ribs and to ascertain the effects of rib parameters on the temperature field. The results show that the location and the gap width between the ribs have a great influence on the axial and radial temperature rise of multilayer biological tissue. With a decreasing gap width, the location of the maximum temperature rise moves forward; as the ribs are closer to the transducer surface, the sound energy that passes through the gap between the ribs at the focus decreases, the maximum temperature rise decreases, and the location of the maximum temperature rise moves forward with the ribs.

    Analytical solution based on the wavenumber integration method for the acoustic field in a Pekeris waveguide
    Wen-Yu Luo(骆文于), Xiao-Lin Yu(于晓林), Xue-Feng Yang(杨雪峰), Ren-He Zhang(张仁和)
    Chin. Phys. B, 2016, 25 (4): 044302.   DOI: 10.1088/1674-1056/25/4/044302
    Abstract830)   HTML    PDF (4020KB)(567)      
    An exact solution based on the wavenumber integration method is proposed and implemented in a numerical model for the acoustic field in a Pekeris waveguide excited by either a point source in cylindrical geometry or a line source in plane geometry. Besides, an unconditionally stable numerical solution is also presented, which entirely resolves the stability problem in previous methods. Generally the branch line integral contributes to the total field only at short ranges, and hence is usually ignored in traditional normal mode models. However, for the special case where a mode lies near the branch cut, the branch line integral can contribute to the total field significantly at all ranges. The wavenumber integration method is well-suited for such problems. Numerical results are also provided, which show that the present model can serve as a benchmark for sound propagation in a Pekeris waveguide.
    Use of a plane jet for flow-induced noise reduction of tandem rods
    Kun Zhao(赵鲲), Xi-xiang Yang(杨希祥), Patrick N Okolo, Wei-hua Zhang(张为华)
    Chin. Phys. B, 2016, 25 (6): 064301.   DOI: 10.1088/1674-1056/25/6/064301
    Abstract612)   HTML    PDF (2486KB)(422)      

    Unsteady wake from upstream components of landing gear impinging on downstream components could be a strong noise source. The use of a plane jet is proposed to reduce this flow-induced noise. Tandem rods with different gap widths were utilized as the test body. Both acoustic and aerodynamic tests were conducted in order to validate this technique. Acoustic test results proved that overall noise emission from tandem rods could be lowered and tonal noise could be removed with use of the plane jet. However, when the plane jet was turned on, in some frequency range it could be the subsequent main contributor instead of tandem rods to total noise emission whilst in some frequency range rods could still be the main contributor. Moreover, aerodynamic tests fundamentally studied explanations for the noise reduction. Specifically, not only impinging speed to rods but speed and turbulence level to the top edge of the rear rod could be diminished by the upstream plane jet. Consequently, the vortex shedding induced by the rear rod was reduced, which was confirmed by the speed, Reynolds stress as well as the velocity fluctuation spectral measured in its wake. This study confirmed the potential use of a plane jet towards landing gear noise reduction.

    A new brain stimulation method: Noninvasive transcranial magneto-acoustical stimulation
    Yi Yuan(袁 毅), Yu-Dong Chen(陈玉东), Xiao-Li Li(李小俚)
    Chin. Phys. B, 2016, 25 (8): 084301.   DOI: 10.1088/1674-1056/25/8/084301
    Abstract654)   HTML    PDF (1506KB)(590)      

    We investigate transcranial magneto-acoustical stimulation (TMAS) for noninvasive brain neuromodulation in vivo. TMAS as a novel technique uses an ultrasound wave to induce an electric current in the brain tissue in the static magnetic field. It has the advantage of high spatial resolution and penetration depth. The mechanism of TMAS onto a neuron is analyzed by combining the TMAS principle and Hodgkin-Huxley neuron model. The anesthetized rats are stimulated by TMAS, resulting in the local field potentials which are recorded and analyzed. The simulation results show that TMAS can induce neuronal action potential. The experimental results indicate that TMAS can not only increase the amplitude of local field potentials but also enhance the effect of focused ultrasound stimulation on the neuromodulation. In summary, TMAS can accomplish brain neuromodulation, suggesting a potentially powerful noninvasive stimulation method to interfere with brain rhythms for diagnostic and therapeutic purposes.

    Acoustic focusing through two layer annuluses in air
    Yi-Jun Guan(管义钧), Hong-Xiang Sun(孙宏祥), Shu-Sen Liu(刘树森), Shou-Qi Yuan(袁寿其), Jian-Ping Xia(夏建平), Yong Ge(葛勇)
    Chin. Phys. B, 2016, 25 (10): 104302.   DOI: 10.1088/1674-1056/25/10/104302
    Abstract548)   HTML    PDF (5338KB)(343)      
    We report an acoustic focusing lens composed of two-layer annuluses made of metal cylinders in air. We find that the cylindrical waves can be focused into a perfect point without diffraction in the centre of the annuluses, which arises from the Mie-resonance modes in the annuluses. The focusing frequencies are related to the size of the inner annulus, and the focusing effect can be applied to the annuluses with different shapes and incident positions. Interesting applications of the focusing lens in the acoustic beam splitter and directional transmitter with energy enhancement are further discussed.
    Tunable acoustic radiation pattern assisted by effective impedance boundary
    Feng Qian(钱 枫), Li Quan(全力), Li-Wei Wang(王力维), Xiao-Zhou Liu (刘晓宙), Xiu-Fen Gong(龚秀芬)
    Chin. Phys. B, 2016, 25 (2): 024301.   DOI: 10.1088/1674-1056/25/2/024301
    Abstract663)   HTML    PDF (2145KB)(438)      
    The acoustic wave propagation from a two-dimensional subwavelength slit surrounded by metal plates decorated with Helmholtz resonators (HRs) is investigated both numerically and experimentally in this work. Owing to the presence of HRs, the effective impedance of metal surface boundary can be manipulated. By optimizing the distribution of HRs, the asymmetric effective impedance boundary will be obtained, which contributes to generating tunable acoustic radiation pattern such as directional acoustic beaming. These dipole-like radiation patterns have high radiation efficiency, no fingerprint of sidelobes, and a wide tunable range of the radiation pattern directivity angle which can be steered by the spatial displacements of HRs.
    Experimental and numerical studies of nonlinear ultrasonic responses on plastic deformation in weld joints
    Yan-Xun Xiang(项延训), Wu-Jun Zhu(朱武军), Ming-Xi Deng(邓明晰), Fu-Zhen Xuan(轩福贞)
    Chin. Phys. B, 2016, 25 (2): 024303.   DOI: 10.1088/1674-1056/25/2/024303
    Abstract625)   HTML    PDF (2105KB)(679)      
    The experimental measurements and numerical simulations are performed to study ultrasonic nonlinear responses from the plastic deformation in weld joints. The ultrasonic nonlinear signals are measured in the plastic deformed 30Cr2Ni4MoV specimens, and the results show that the nonlinear parameter monotonically increases with the plastic strain, and that the variation of nonlinear parameter in the weld region is maximal compared with those in the heat-affected zone and base regions. Microscopic images relating to the microstructure evolution of the weld region are studied to reveal that the change of nonlinear parameter is mainly attributed to dislocation evolutions in the process of plastic deformation loading. Meanwhile, the finite element model is developed to investigate nonlinear behaviors of ultrasonic waves propagating in a plastic deformed material based on the nonlinear stress-strain constitutive relationship in a medium. Moreover, a pinned string model is adopted to simulate dislocation evolution during plastic damages. The simulation and experimental results show that they are in good consistency with each other, and reveal a rising acoustic nonlinearity due to the variations of dislocation length and density and the resulting stress concentration.
    Bubble nonlinear dynamics and stimulated scattering process
    Jie Shi(时洁), De-Sen Yang(杨德森), Sheng-Guo Shi(时胜国), Bo Hu(胡博), Hao-Yang Zhang(张昊阳), Shi-Yong Hu(胡诗涌)
    Chin. Phys. B, 2016, 25 (2): 024304.   DOI: 10.1088/1674-1056/25/2/024304
    Abstract1031)   HTML    PDF (8392KB)(766)      

    A complete understanding of the bubble dynamics is deemed necessary in order to achieve their full potential applications in industry and medicine. For this purpose it is first needed to expand our knowledge of a single bubble behavior under different possible conditions including the frequency and pressure variations of the sound field. In addition, stimulated scattering of sound on a bubble is a special effect in sound field, and its characteristics are associated with bubble oscillation mode. A bubble in liquid can be considered as a representative example of nonlinear dynamical system theory with its resonance, and its dynamics characteristics can be described by the Keller-Miksis equation. The nonlinear dynamics of an acoustically excited gas bubble in water is investigated by using theoretical and numerical analysis methods. Our results show its strongly nonlinear behavior with respect to the pressure amplitude and excitation frequency as the control parameters, and give an intuitive insight into stimulated sound scattering on a bubble. It is seen that the stimulated sound scattering is different from common dynamical behaviors, such as bifurcation and chaos, which is the result of the nonlinear resonance of a bubble under the excitation of a high amplitude acoustic sound wave essentially. The numerical analysis results show that the threshold of stimulated sound scattering is smaller than those of bifurcation and chaos in the common condition.

    Underwater asymmetric acoustic transmission structure using the medium with gradient change of impedance
    Bo Hu(胡博), Jie Shi(时洁), Sheng-Guo Shi(时胜国), Yu Sun(孙玉), Zhong-Rui Zhu(朱中锐)
    Chin. Phys. B, 2016, 25 (2): 024305.   DOI: 10.1088/1674-1056/25/2/024305
    Abstract644)   HTML    PDF (588KB)(435)      
    We propose an underwater asymmetric acoustic transmission structure comprised of two media each with a gradient change of acoustic impedance. By gradually increasing the acoustic impedances of the media, the propagating direction of the acoustic wave can be continuously bent, resulting in allowing the acoustic wave to pass through along the positive direction and blocking acoustic waves from the negative one. The main advantages of this structure are that the asymmetric transmission effect of this structure can be realized and enhanced more easily in water. We investigate both numerically and experimentally the asymmetric transmission effect. The experimental results show that a highly efficient asymmetric acoustic transmission can be yielded within a remarkable broadband frequency range, which agrees well with the numerical prediction. It is of potential practical significance for various underwater applications such as reducing vibration and noise.
    Calculation of multi-layer plate damper under one-axial load
    Hui Yan(闫辉), Lu Zhang(张露), Hong-Yuan Jiang(姜洪源), Alexander M. Ulanov
    Chin. Phys. B, 2016, 25 (2): 024306.   DOI: 10.1088/1674-1056/25/2/024306
    Abstract571)   HTML    PDF (657KB)(386)      
    A multi-layer damper with waved plates under one-axial load is considered. A method of theoretical calculation of its energy dissipation coefficient is proposed. An experimental research of own frequencies and vibration transfer ratios for different parameters of damper structure, harmonic vibration load and random load is performed. Results of this research are approximated by functions; it is possible to use these functions for the calculation of the damper too.
    An acoustic Maxwell's fish-eye lens based on gradient-index metamaterials
    Bao-guo Yuan(袁保国), Ye Tian(田野), Ying Cheng(程营), Xiao-jun Liu(刘晓峻)
    Chin. Phys. B, 2016, 25 (10): 104301.   DOI: 10.1088/1674-1056/25/10/104301
    Abstract714)   HTML    PDF (7348KB)(422)      
    We have proposed a two-dimensional acoustic Maxwell's fish-eye lens by using the gradient-index metamaterials with space-coiling units. By adjusting the structural parameters of the units, the refractive index can be gradually varied, which is key role to design the acoustic fish-eye lens. As predicted by ray trajectories on a virtual sphere, the proposed lens has the capability to focus the acoustic wave irradiated from a point source at the surface of the lens on the diametrically opposite side of the lens. The broadband and low loss performance is further demonstrated for the lens. The proposed acoustic fish-eye lens is expected to have the potential applications in directional acoustic coupler or coherent ultrasonic imaging.
    Low band gap frequencies and multiplexing properties in 1D and 2D mass spring structures
    Arafa H Aly, Ahmed Mehaney
    Chin. Phys. B, 2016, 25 (11): 114301.   DOI: 10.1088/1674-1056/25/11/114301
    Abstract605)   HTML    PDF (2673KB)(530)      
    This study reports on the propagation of elastic waves in 1D and 2D mass spring structures. An analytical and computation model is presented for the 1D and 2D mass spring systems with different examples. An enhancement in the band gap values was obtained by modeling the structures to obtain low frequency band gaps at small dimensions. Additionally, the evolution of the band gap as a function of mass value is discussed. Special attention is devoted to the local resonance property in frequency ranges within the gaps in the band structure for the corresponding infinite periodic lattice in the 1D and 2D mass spring system. A linear defect formed of a row of specific masses produces an elastic waveguide that transmits at the narrow pass band frequency. The frequency of the waveguides can be selected by adjusting the mass and stiffness coefficients of the materials constituting the waveguide. Moreover, we pay more attention to analyze the wave multiplexer and DE-multiplexer in the 2D mass spring system. We show that two of these tunable waveguides with alternating materials can be employed to filter and separate specific frequencies from a broad band input signal. The presented simulation data is validated through comparison with the published research, and can be extended in the development of resonators and MEMS verification.