Please wait a minute...
Chin. Phys. B, 2016, Vol. 25(3): 034209    DOI: 10.1088/1674-1056/25/3/034209
ELECTROMAGNETISM, OPTICS, ACOUSTICS, HEAT TRANSFER, CLASSICAL MECHANICS, AND FLUID DYNAMICS Prev   Next  

Theoretical simulation of a novel birefringent photonic crystal fiber with surface plasmon resonance around 1300 nm

Duanming Li(李端明)1,2, Guiyao Zhou(周桂耀)3
1. Laboratory of Science and Technology on Underwater Acoustic Antagonizing, Shanghai 201108, China;
2. Shanghai Marine Electronic Equipment Research Institute, Shanghai 201108, China;
3. Guangdong Provincial Key Laboratory of Nanophotonic Functional Materials and Devices, South China Normal University, Guangzhou 510006, China
Abstract  

In this paper, a novel birefringent photonic crystal fiber (PCF) with the silver-coated and liquid-filled air-holes along the vertical plane is designed. Simulation results show that the thickness of silver layer, the sizes of holes, and the refractive index of liquid strongly strengthen the gaps between two polarized directions. The surface plasmon resonance peak along y axis can be up to 675.8 dB/cm at 1.33 μm. The proposed PCF has important application in polarization devices, such as filters and beam splitters.

Keywords:  photonic crystal fiber (PCF)      silver layer      surface plasmon resonance  
Received:  09 September 2015      Revised:  18 October 2015      Accepted manuscript online: 
PACS:  42.65.-k (Nonlinear optics)  
  42.81.-i (Fiber optics)  
Fund: 

Project partly supported by the National Basic Research Development Program of China (Grant No. 2010CB327604), the National Natural Science Foundation of China (Grant No. 61377100), and the Natural Science Foundation of Guangdong Province, China (Grant No. S2013040015665).

Corresponding Authors:  Duanming Li     E-mail:  duanming.li@hotmail.com

Cite this article: 

Duanming Li(李端明), Guiyao Zhou(周桂耀) Theoretical simulation of a novel birefringent photonic crystal fiber with surface plasmon resonance around 1300 nm 2016 Chin. Phys. B 25 034209

[1] Knight J C, Birks T A and Russell P St J 1996 Opt. Lett. 21 1547
[2] Knight J C 2003 Nature 424 847
[3] Ortigosa-Blanch A, Knight J C, Wadsworth W J, Arriaga J, Mangan B J, Birks T A and Russell P St J 2000 Opt. Lett. 25 1325
[4] Tatsuya K, Yoshinori N, Kazuy A, Taito K and Shubi F K 2010 Opt. Rev. 17 61
[5] Saitoh K, Florous N and Koshiba M 2005 Opt. Express 13 8365
[6] Cubillas A M, Unterkofler S, Euser T G, Etzold B J M, Jones A C, Sadler P J, Wasserscheid P and Russell P St J 2013 Chem. Soc. Rev. 42 8575
[7] Ren G, Shum P, Yu X, Hu J, Wang G and Gong Y 2008 Opt. Commun. 281 1598
[8] Unterkofler S, Garbos M K, Euser T G and Russell P St J 2013 J. Biophotonics 6 743
[9] Ritari T, Ludvigsen H, Wegmuller M, Legré M, Gisin N, Folkenberg J R and Nielsen M D 2004 Opt. Express 12 5931
[10] Li D M, Zhou G Y, Xia C M, Wang C and Yuan J H 2014 Chin. Phys. B 23 044209
[11] Liu S, Li S G, Yin G B, Feng R P and Wang X Y 2012 Opt. Commun. 2 1097
[12] Wei S, Yuan J H, Yu C X, Wu Q, Farrell G, Li S, Jin B and Hu X M 2014 Opt. Fiber Technol. 20 320
[13] Zang Z G, Minato T, Navaretti P, Hinokuma Y, Duelk M, Velez C and Hamamoto K 2010 IEEE Photon. Technol. Lett. 22 1041
[14] Zang Z G, Mukai K, Navaretti P, Duelk M, Velez C and Hamamoto K 2012 Appl. Phys. Lett. 100 031108
[15] Lee H W, Schmidt M A, Tyagi H K, Sempere L P and Russell P St J 2008 Appl. Phys. Lett. 93 111102
[16] Schmidt M A and Russell P St J 2008 Opt. Express 16 13617
[17] Schmidt M A, Prill S L N, Tyagi H K, Poulton C G and Russell P St J 2008 Phys. Rev. B 77 033417
[18] Yu X, Zhang Y, Pan S S, Shum P, Yan M, Leviatan Y and Li C M 2010 J. Opt. 12 015005
[19] Uebel P, Schmidt M A, Lee H W and Russell P St J 2012 Opt. Express 20 28409
[20] Xue J R, Li S G, Xiao Y Z, Qin W, Xin X J and Zhu X P 2013 Opt. Express 21 13733
[21] Liu Q, Li S G and Chen H L 2015 IEEE Photon. J. 7 1
[22] Fan Z K, Li S G, Chen H L, Liu Q, Zhang W, An G W, Li J S and Bao Y J 2014 Plasmonics 10 675
[23] Zhang X, Wang R, Cox F M, Kuhlmey B T and Large M C J 2007 Opt. Express 15 16270
[24] Bing P B, Li Z Y, Yao J Q, Lu Y, Di Z G and Yan X 2012 Optoelectron. Lett. 8 245
[25] Agrawal G P 1989 Nonlinear Fiber Optics (Academic Press)
[26] Rakic A D, Djurisic A B, Elazar J M and Majewski M L 1998 Appl. Opt. 37 5271
[27] Hassani A and Skorobogatiy M 2006 Opt. Express 14 11616
[28] Gauvreau B, Hassani A, Fehri M F, Kabashin A and Skorobogatiy M 2007 Opt. Express 15 11413
[29] Luan N N, Wang R, Lu Y and Yao J Q 2014 Opt. Eng. 53 067103
[30] Al-Qazwini Y, Noor A S M, Arasu P T and Sadrolhosseini A R 2013 Curr. Appl. Phys. 13 1354
[1] Numerical simulation of a truncated cladding negative curvature fiber sensor based on the surface plasmon resonance effect
Zhichao Zhang(张志超), Jinhui Yuan(苑金辉), Shi Qiu(邱石), Guiyao Zhou(周桂耀), Xian Zhou(周娴), Binbin Yan(颜玢玢), Qiang Wu(吴强), Kuiru Wang(王葵如), and Xinzhu Sang(桑新柱). Chin. Phys. B, 2023, 32(3): 034208.
[2] Fiber cladding dual channel surface plasmon resonance sensor based on S-type fiber
Yong Wei(魏勇), Xiaoling Zhao(赵晓玲), Chunlan Liu(刘春兰), Rui Wang(王锐), Tianci Jiang(蒋天赐), Lingling Li(李玲玲), Chen Shi(石晨), Chunbiao Liu(刘纯彪), and Dong Zhu(竺栋). Chin. Phys. B, 2023, 32(3): 030702.
[3] Dual-channel fiber-optic surface plasmon resonance sensor with cascaded coaxial dual-waveguide D-type structure and microsphere structure
Ling-Ling Li(李玲玲), Yong Wei(魏勇), Chun-Lan Liu(刘春兰), Zhuo Ren(任卓), Ai Zhou(周爱), Zhi-Hai Liu(刘志海), and Yu Zhang(张羽). Chin. Phys. B, 2023, 32(2): 020702.
[4] Numerical study of a highly sensitive surface plasmon resonance sensor based on circular-lattice holey fiber
Jian-Fei Liao(廖健飞), Dao-Ming Lu(卢道明), Li-Jun Chen(陈丽军), and Tian-Ye Huang(黄田野). Chin. Phys. B, 2022, 31(6): 060701.
[5] Multi-frequency focusing of microjets generated by polygonal prisms
Yu-Jing Yang(杨育静), De-Long Zhang(张德龙), and Ping-Rang Hua(华平壤). Chin. Phys. B, 2022, 31(3): 034201.
[6] Sensitivity improvement of aluminum-based far-ultraviolet nearly guided-wave surface plasmon resonance sensor
Tianqi Li(李天琦), Shujing Chen(陈淑静), and Chengyou Lin(林承友). Chin. Phys. B, 2022, 31(12): 124208.
[7] Photonic spin Hall effect and terahertz gas sensor via InSb-supported long-range surface plasmon resonance
Jie Cheng(程杰), Gaojun Wang(王高俊), Peng Dong(董鹏), Dapeng Liu(刘大鹏), Fengfeng Chi(迟逢逢), and Shengli Liu(刘胜利). Chin. Phys. B, 2022, 31(1): 014205.
[8] A multi-band and polarization-independent perfect absorber based on Dirac semimetals circles and semi-ellipses array
Zhiyou Li(李治友), Yingting Yi(易颖婷), Danyang Xu(徐丹阳), Hua Yang(杨华), Zao Yi(易早), Xifang Chen(陈喜芳), Yougen Yi(易有根), Jianguo Zhang(张建国), and Pinghui Wu(吴平辉). Chin. Phys. B, 2021, 30(9): 098102.
[9] Surface plasmon polaritons frequency-blue shift in low confinement factor excitation region
Ling-Xi Hu(胡灵犀), Zhi-Qiang He(何志强), Min Hu(胡旻), and Sheng-Gang Liu(刘盛纲). Chin. Phys. B, 2021, 30(8): 084102.
[10] Optical absorption tunability and local electric field distribution of gold-dielectric-silver three-layered cylindrical nanotube
Ye-Wan Ma(马业万), Zhao-Wang Wu(吴兆旺), Yan-Yan Jiang(江燕燕), Juan Li(李娟), Xun-Chang Yin(尹训昌), Li-Hua Zhang(章礼华), and Ming-Fang Yi(易明芳). Chin. Phys. B, 2021, 30(11): 114207.
[11] Controlled plasmon-enhanced fluorescence by spherical microcavity
Jingyi Zhao(赵静怡), Weidong Zhang(张威东), Te Wen(温特), Lulu Ye(叶璐璐), Hai Lin(林海), Jinglin Tang(唐靖霖), Qihuang Gong(龚旗煌), and Guowei Lyu(吕国伟). Chin. Phys. B, 2021, 30(11): 114215.
[12] Cascaded dual-channel fiber SPR temperature sensor based on liquid and solid encapsulations
Yong Wei(魏勇), Lingling Li(李玲玲), Chunlan Liu(刘春兰), Jiangxi Hu(胡江西), Yudong Su(苏于东), Ping Wu(吴萍), and Xiaoling Zhao(赵晓玲). Chin. Phys. B, 2021, 30(10): 100701.
[13] Photocurrent improvement of an ultra-thin silicon solar cell using the localized surface plasmonic effect of clustering nanoparticles
F Sobhani, H Heidarzadeh, H Bahador. Chin. Phys. B, 2020, 29(6): 068401.
[14] Tunability of Fano resonance in cylindrical core-shell nanorods
Ben-Li Wang(王本立). Chin. Phys. B, 2020, 29(4): 045202.
[15] Processes underlying the laser photochromic effect in colloidal plasmonic nanoparticle aggregates
A E Ershov, V S Gerasimov, I L Isaev, A P Gavrilyuk, S V Karpov. Chin. Phys. B, 2020, 29(3): 037802.
No Suggested Reading articles found!