Please wait a minute...
Chin. Phys. B, 2016, Vol. 25(11): 118101    DOI: 10.1088/1674-1056/25/11/118101
INTERDISCIPLINARY PHYSICS AND RELATED AREAS OF SCIENCE AND TECHNOLOGY Prev   Next  

Low specific contact resistivity to graphene achieved by AuGe/Ni/Au and annealing process

Shu-Zhen Yu(于淑珍)1, Yan Song(宋焱)1,2, Jian-Rong Dong(董建荣)1, Yu-Run Sun(孙玉润)1, Yong-Ming Zhao(赵勇明)1,3, Yang He(何洋)1,3
1 Key Laboratory of Nanodevices and Applications, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou 215123, China;
2 Nano Science and Technology Institute, University of Science and Technology of China, Suzhou 215123, China;
3 University of Chinese Academy of Sciences, Beijing 100049, China
Abstract  Low metal-graphene contact resistance is important in making high-performance graphene devices. In this work, we demonstrate a lower specific contact resistivity of Au0.88 Ge0.12/Ni/Au-graphene contact compared with Ti/Au and Ti/Pt/Au contacts. The rapid thermal annealing process was optimized to improve AuGe/Ni/Au contact resistance. Results reveal that both pre- and post-annealing processes are effective for reducing the contact resistance. The specific contact resistivity decreases from 2.5×10-4 to 7.8×10-5 Ω·cm2 by pre-annealing at 300℃ for one hour, and continues to decrease to 9.5×10-7 Ω·cm2 after post-annealing at 490℃ for 60 seconds. These approaches provide reliable means of lowering contact resistance.
Keywords:  graphene      AuGe/Ni/Au      annealing      contact resistance  
Received:  19 May 2016      Revised:  02 August 2016      Accepted manuscript online: 
PACS:  81.05.ue (Graphene)  
  73.40.Ns (Metal-nonmetal contacts)  
  61.72.Bb (Theories and models of crystal defects)  
Fund: Project supported by the National Natural Science Foundation of China (Grant No. 61376065) and the Science and Technology Project of Suzhou, China (Grant No. ZXG2013044).
Corresponding Authors:  Shu-Zhen Yu     E-mail:  szyu2010@sinano.ac.cn

Cite this article: 

Shu-Zhen Yu(于淑珍), Yan Song(宋焱), Jian-Rong Dong(董建荣), Yu-Run Sun(孙玉润), Yong-Ming Zhao(赵勇明), Yang He(何洋) Low specific contact resistivity to graphene achieved by AuGe/Ni/Au and annealing process 2016 Chin. Phys. B 25 118101

[1] Tang C C, Li M Y, Li L J, Chi C C and Chen J C 2012 Appl. Phys. Lett. 101 202104
[2] Miao X, Tongay S, Petterson M K, Berke K, Rinzler A G, Appleton B R and Hebard A F 2012 Nano Lett. 12 2745
[3] Kim R H, Bae M H, Kim D G, Cheng H, Kim B H, Kim D H, Li M, Wu J, Du F, Kim H S, Kim S, Estrada D, Hong S W, Huang Y, Pop E and Rogers J A 2011 Nano Lett. 11 3881
[4] Moon J S, Curtis D, Bui S, Hu M, Gaskill D K, Tedesco J L, Asbeck P, Jernigan G G, Van Mil B L, Myers-Ward R L, Eddy C R, Campbell P M and Weng X 2010 IEEE Electron Dev. Lett. 31 260
[5] Fang Z, Liu Z, Wang Y, Ajayan P M, Nordlander P and Halas N J 2012 Nano Lett. 12 3808
[6] Yang X X, Sun J D, Q H, Lv L, Su L N, Yan B, Li X X, Zhang Z P and Fang J Y 2015 Chin. Phys. B 24 047206
[7] Huang J, Guo L W, Lu W, Zhang Y H, Shi Z, Jia Y P, Li Z L, Yang J W, Chen H X, Mei Z X and Chen X L 2016 Chin. Phys. B 25 067205
[8] Balci O and Kocabas C 2012 Appl. Phys. Lett. 101 243105
[9] Smith J T, Franklin A D, Farmer D B and Dimitrakopoulos C D 2013 ACS Nano 7 3661
[10] Nath A, Koehler A D, Jernigan G G, Wheeler V D, Hite J K, Hernandez S C, Robinson Z R, Garces N Y, Myers-Ward R L, Eddy C R, Gaskill D K and Rao M V 2014 Appl. Phys. Lett. 104 224102
[11] Song S M, Park J K, Sul O J and Cho B J 2012 Nano Lett. 12 3887
[12] Robinson J A, LaBella M Zhu M, Hollander M, Kasarda R, Hughes Z, Trumbull K, Cavalero R and Snyder D 2011 Appl. Phys. Lett. 98 053103
[13] Li W, Liang Y, Yu D, Peng L, Pernstich K P, Shen T, Hight Walker A R, Cheng G J, Hacker C A, Richter C A, Li Q, Gundlach D J and Liang X 2013 Appl. Phys. Lett. 102 183110
[14] Lim Y D, Lee D Y, Shen T Z, Ra C H, Choi J Y and YooW J 2012 ACS Nano 6 4410
[15] Leong W S, Nai C T and Thong J T L 2014 Nano Lett. 14 3840
[16] Jang C W, Kim J H, Kim J M, Shin D H, Kim S and Choi S H 2013 Nanotechnology 24 405301
[17] Cheng Z, Zhou Q, Wang C, Li Q, Wang C and Fang Y 2011 Nano Lett. 11 767
[18] Moon J S, Curtis D, Hu M, Wong D, McGuire C, Campbell P M, Jernigan G, Tedesco J L, Van Mil B, Myers-Ward R, Eddy C and Gaskill D K 2009 IEEE Electron Dev. Lett. 30 650
[19] Ito K, Ogata T, Sakai T and Awano Y 2015 Appl. Phys. Express 8 025101
[20] Wang L, Zhang Y, Li X, Liu Z, Guo E, Yi X, Wang J, Zhu H and Wang G 2012 J. Phys. D:Appl. Phys. 45 505102
[21] Watanabe E, Conwill A, Tsuya D and Koide Y 2012 Diam. Relat. Mater. 24 171
[22] Giovannetti G, Khomyakov P A, Brocks G, Karpan V M, van den Brink J and Kelly P J 2008 Phys. Rev. Lett. 101 026803
[23] Gong C, McDonnell S, Qin X, Azcatl A, Dong H, Chabal Y J, Cho K and Wallace R M 2014 ACS Nano 8 642
[24] Tahamtan S, Goodarzi A, Abbasi S P, Hodaei A, Zabihi M S and Sabbaghzadeh J 2011 Microelectr. Reliab. 51 1330
[25] Aktürk E, Ataca C and Ciraci S 2010 Appl. Phys. Lett. 96 123112
[26] Khomyakov P A, Giovannetti G, Rusu P C, Brocks G, van den Brink J and Kelly P J 2009 Phys. Rev. B 79 195425
[27] Denis P A 2014 Chem. Phys. Chem. 15 3994
[28] Katz A, Weir E and Dautremont-Smith W C 1990 J. Appl. Phys. 68 1123
[1] Polarization Raman spectra of graphene nanoribbons
Wangwei Xu(许望伟), Shijie Sun(孙诗杰), Muzi Yang(杨慕紫), Zhenliang Hao(郝振亮), Lei Gao(高蕾), Jianchen Lu(卢建臣), Jiasen Zhu(朱嘉森), Jian Chen(陈建), and Jinming Cai(蔡金明). Chin. Phys. B, 2023, 32(4): 046803.
[2] Spin- and valley-polarized Goos-Hänchen-like shift in ferromagnetic mass graphene junction with circularly polarized light
Mei-Rong Liu(刘美荣), Zheng-Fang Liu(刘正方), Ruo-Long Zhang(张若龙), Xian-Bo Xiao(肖贤波), and Qing-Ping Wu(伍清萍). Chin. Phys. B, 2023, 32(3): 037301.
[3] Graphene metasurface-based switchable terahertz half-/quarter-wave plate with a broad bandwidth
Xiaoqing Luo(罗小青), Juan Luo(罗娟), Fangrong Hu(胡放荣), and Guangyuan Li(李光元). Chin. Phys. B, 2023, 32(2): 027801.
[4] Correlated states in alternating twisted bilayer-monolayer-monolayer graphene heterostructure
Ruirui Niu(牛锐锐), Xiangyan Han(韩香岩), Zhuangzhuang Qu(曲壮壮), Zhiyu Wang(王知雨), Zhuoxian Li(李卓贤), Qianling Liu(刘倩伶), Chunrui Han(韩春蕊), and Jianming Lu(路建明). Chin. Phys. B, 2023, 32(1): 017202.
[5] Adsorption dynamics of double-stranded DNA on a graphene oxide surface with both large unoxidized and oxidized regions
Mengjiao Wu(吴梦娇), Huishu Ma(马慧姝), Haiping Fang(方海平), Li Yang(阳丽), and Xiaoling Lei(雷晓玲). Chin. Phys. B, 2023, 32(1): 018701.
[6] Phosphorus diffusion and activation in fluorine co-implanted germanium after excimer laser annealing
Chen Wang(王尘), Wei-Hang Fan(范伟航), Yi-Hong Xu(许怡红), Yu-Chao Zhang(张宇超), Hui-Chen Fan(范慧晨), Cheng Li(李成), and Song-Yan Cheng(陈松岩). Chin. Phys. B, 2022, 31(9): 098503.
[7] Precisely controlling the twist angle of epitaxial MoS2/graphene heterostructure by AFM tip manipulation
Jiahao Yuan(袁嘉浩), Mengzhou Liao(廖梦舟), Zhiheng Huang(黄智恒), Jinpeng Tian(田金朋), Yanbang Chu(褚衍邦), Luojun Du(杜罗军), Wei Yang(杨威), Dongxia Shi(时东霞), Rong Yang(杨蓉), and Guangyu Zhang(张广宇). Chin. Phys. B, 2022, 31(8): 087302.
[8] Longitudinal conductivity in ABC-stacked trilayer graphene under irradiating of linearly polarized light
Guo-Bao Zhu(朱国宝), Hui-Min Yang(杨慧敏), and Jie Yang(杨杰). Chin. Phys. B, 2022, 31(8): 088102.
[9] Dual-channel tunable near-infrared absorption enhancement with graphene induced by coupled modes of topological interface states
Zeng-Ping Su(苏增平), Tong-Tong Wei(魏彤彤), and Yue-Ke Wang(王跃科). Chin. Phys. B, 2022, 31(8): 087804.
[10] Recent advances of defect-induced spin and valley polarized states in graphene
Yu Zhang(张钰), Liangguang Jia(贾亮广), Yaoyao Chen(陈瑶瑶), Lin He(何林), and Yeliang Wang(王业亮). Chin. Phys. B, 2022, 31(8): 087301.
[11] Dynamically tunable multiband plasmon-induced transparency effect based on graphene nanoribbon waveguide coupled with rectangle cavities system
Zi-Hao Zhu(朱子豪), Bo-Yun Wang(王波云), Xiang Yan(闫香), Yang Liu(刘洋), Qing-Dong Zeng(曾庆栋), Tao Wang(王涛), and Hua-Qing Yu(余华清). Chin. Phys. B, 2022, 31(8): 084210.
[12] Introducing voids around the interlayer of AlN by high temperature annealing
Jianwei Ben(贲建伟), Jiangliu Luo(罗江流), Zhichen Lin(林之晨), Xiaojuan Sun(孙晓娟), Xinke Liu(刘新科), and Xiaohua Li(黎晓华). Chin. Phys. B, 2022, 31(7): 076104.
[13] Valley-dependent transport in strain engineering graphene heterojunctions
Fei Wan(万飞), X R Wang(王新茹), L H Liao(廖烈鸿), J Y Zhang(张嘉颜),M N Chen(陈梦南), G H Zhou(周光辉), Z B Siu(萧卓彬), Mansoor B. A. Jalil, and Yuan Li(李源). Chin. Phys. B, 2022, 31(7): 077302.
[14] Thermionic electron emission in the 1D edge-to-edge limit
Tongyao Zhang(张桐耀), Hanwen Wang(王汉文), Xiuxin Xia(夏秀鑫), Chengbing Qin(秦成兵), and Xiaoxi Li(李小茜). Chin. Phys. B, 2022, 31(5): 058504.
[15] Photoelectrochemical activity of ZnO:Ag/rGO photo-anodes synthesized by two-steps sol-gel method
D Ben Jemia, M Karyaoui, M A Wederni, A Bardaoui, M V Martinez-Huerta, M Amlouk, and R Chtourou. Chin. Phys. B, 2022, 31(5): 058201.
No Suggested Reading articles found!