INTERDISCIPLINARY PHYSICS AND RELATED AREAS OF SCIENCE AND TECHNOLOGY |
Prev
Next
|
|
|
Low specific contact resistivity to graphene achieved by AuGe/Ni/Au and annealing process |
Shu-Zhen Yu(于淑珍)1, Yan Song(宋焱)1,2, Jian-Rong Dong(董建荣)1, Yu-Run Sun(孙玉润)1, Yong-Ming Zhao(赵勇明)1,3, Yang He(何洋)1,3 |
1 Key Laboratory of Nanodevices and Applications, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou 215123, China; 2 Nano Science and Technology Institute, University of Science and Technology of China, Suzhou 215123, China; 3 University of Chinese Academy of Sciences, Beijing 100049, China |
|
|
Abstract Low metal-graphene contact resistance is important in making high-performance graphene devices. In this work, we demonstrate a lower specific contact resistivity of Au0.88 Ge0.12/Ni/Au-graphene contact compared with Ti/Au and Ti/Pt/Au contacts. The rapid thermal annealing process was optimized to improve AuGe/Ni/Au contact resistance. Results reveal that both pre- and post-annealing processes are effective for reducing the contact resistance. The specific contact resistivity decreases from 2.5×10-4 to 7.8×10-5 Ω·cm2 by pre-annealing at 300℃ for one hour, and continues to decrease to 9.5×10-7 Ω·cm2 after post-annealing at 490℃ for 60 seconds. These approaches provide reliable means of lowering contact resistance.
|
Received: 19 May 2016
Revised: 02 August 2016
Accepted manuscript online:
|
PACS:
|
81.05.ue
|
(Graphene)
|
|
73.40.Ns
|
(Metal-nonmetal contacts)
|
|
61.72.Bb
|
(Theories and models of crystal defects)
|
|
Fund: Project supported by the National Natural Science Foundation of China (Grant No. 61376065) and the Science and Technology Project of Suzhou, China (Grant No. ZXG2013044). |
Corresponding Authors:
Shu-Zhen Yu
E-mail: szyu2010@sinano.ac.cn
|
Cite this article:
Shu-Zhen Yu(于淑珍), Yan Song(宋焱), Jian-Rong Dong(董建荣), Yu-Run Sun(孙玉润), Yong-Ming Zhao(赵勇明), Yang He(何洋) Low specific contact resistivity to graphene achieved by AuGe/Ni/Au and annealing process 2016 Chin. Phys. B 25 118101
|
[1] |
Tang C C, Li M Y, Li L J, Chi C C and Chen J C 2012 Appl. Phys. Lett. 101 202104
|
[2] |
Miao X, Tongay S, Petterson M K, Berke K, Rinzler A G, Appleton B R and Hebard A F 2012 Nano Lett. 12 2745
|
[3] |
Kim R H, Bae M H, Kim D G, Cheng H, Kim B H, Kim D H, Li M, Wu J, Du F, Kim H S, Kim S, Estrada D, Hong S W, Huang Y, Pop E and Rogers J A 2011 Nano Lett. 11 3881
|
[4] |
Moon J S, Curtis D, Bui S, Hu M, Gaskill D K, Tedesco J L, Asbeck P, Jernigan G G, Van Mil B L, Myers-Ward R L, Eddy C R, Campbell P M and Weng X 2010 IEEE Electron Dev. Lett. 31 260
|
[5] |
Fang Z, Liu Z, Wang Y, Ajayan P M, Nordlander P and Halas N J 2012 Nano Lett. 12 3808
|
[6] |
Yang X X, Sun J D, Q H, Lv L, Su L N, Yan B, Li X X, Zhang Z P and Fang J Y 2015 Chin. Phys. B 24 047206
|
[7] |
Huang J, Guo L W, Lu W, Zhang Y H, Shi Z, Jia Y P, Li Z L, Yang J W, Chen H X, Mei Z X and Chen X L 2016 Chin. Phys. B 25 067205
|
[8] |
Balci O and Kocabas C 2012 Appl. Phys. Lett. 101 243105
|
[9] |
Smith J T, Franklin A D, Farmer D B and Dimitrakopoulos C D 2013 ACS Nano 7 3661
|
[10] |
Nath A, Koehler A D, Jernigan G G, Wheeler V D, Hite J K, Hernandez S C, Robinson Z R, Garces N Y, Myers-Ward R L, Eddy C R, Gaskill D K and Rao M V 2014 Appl. Phys. Lett. 104 224102
|
[11] |
Song S M, Park J K, Sul O J and Cho B J 2012 Nano Lett. 12 3887
|
[12] |
Robinson J A, LaBella M Zhu M, Hollander M, Kasarda R, Hughes Z, Trumbull K, Cavalero R and Snyder D 2011 Appl. Phys. Lett. 98 053103
|
[13] |
Li W, Liang Y, Yu D, Peng L, Pernstich K P, Shen T, Hight Walker A R, Cheng G J, Hacker C A, Richter C A, Li Q, Gundlach D J and Liang X 2013 Appl. Phys. Lett. 102 183110
|
[14] |
Lim Y D, Lee D Y, Shen T Z, Ra C H, Choi J Y and YooW J 2012 ACS Nano 6 4410
|
[15] |
Leong W S, Nai C T and Thong J T L 2014 Nano Lett. 14 3840
|
[16] |
Jang C W, Kim J H, Kim J M, Shin D H, Kim S and Choi S H 2013 Nanotechnology 24 405301
|
[17] |
Cheng Z, Zhou Q, Wang C, Li Q, Wang C and Fang Y 2011 Nano Lett. 11 767
|
[18] |
Moon J S, Curtis D, Hu M, Wong D, McGuire C, Campbell P M, Jernigan G, Tedesco J L, Van Mil B, Myers-Ward R, Eddy C and Gaskill D K 2009 IEEE Electron Dev. Lett. 30 650
|
[19] |
Ito K, Ogata T, Sakai T and Awano Y 2015 Appl. Phys. Express 8 025101
|
[20] |
Wang L, Zhang Y, Li X, Liu Z, Guo E, Yi X, Wang J, Zhu H and Wang G 2012 J. Phys. D:Appl. Phys. 45 505102
|
[21] |
Watanabe E, Conwill A, Tsuya D and Koide Y 2012 Diam. Relat. Mater. 24 171
|
[22] |
Giovannetti G, Khomyakov P A, Brocks G, Karpan V M, van den Brink J and Kelly P J 2008 Phys. Rev. Lett. 101 026803
|
[23] |
Gong C, McDonnell S, Qin X, Azcatl A, Dong H, Chabal Y J, Cho K and Wallace R M 2014 ACS Nano 8 642
|
[24] |
Tahamtan S, Goodarzi A, Abbasi S P, Hodaei A, Zabihi M S and Sabbaghzadeh J 2011 Microelectr. Reliab. 51 1330
|
[25] |
Aktürk E, Ataca C and Ciraci S 2010 Appl. Phys. Lett. 96 123112
|
[26] |
Khomyakov P A, Giovannetti G, Rusu P C, Brocks G, van den Brink J and Kelly P J 2009 Phys. Rev. B 79 195425
|
[27] |
Denis P A 2014 Chem. Phys. Chem. 15 3994
|
[28] |
Katz A, Weir E and Dautremont-Smith W C 1990 J. Appl. Phys. 68 1123
|
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|