Please wait a minute...
Chin. Phys. B, 2016, Vol. 25(11): 118102    DOI: 10.1088/1674-1056/25/11/118102
INTERDISCIPLINARY PHYSICS AND RELATED AREAS OF SCIENCE AND TECHNOLOGY Prev   Next  

Metal-enhanced fluorescence of graphene oxide by palladium nanoparticles in the blue-green part of the spectrum

A Omidvar1, M R RashidianVaziri2, B Jaleh1, N Partovi Shabestari2, M Noroozi3
1 Department of Physics, Bu-Ali Sina University, P. O. Box 65174, Hamedan, Iran;
2 Laser and Optics Research School, NSTRI, Tehran, Iran;
3 Center for Research and Development of Petroleum Technologies at Kermanshah, Research Institute of Petroleum Industry(RIPI), Kermanshah, Iran
Abstract  Graphene oxide (GO) has a wide fluorescence bandwidth, which makes it a prospective candidate for numerous applications. For many of these applications, the fluorescence yield of GO should be further increased. The sp2-hybridized carbons in GO confine the π-electrons. Radiative recombination of electron-hole pairs in such sp2 clusters is the source of fluorescence in this material. Palladium nanoparticles are good catalysts for sp2 bond formations. We report on the preparation of GO, palladium nanoparticles and their nanocomposites in two different solvents. It is shown that palladium nanoparticles can considerably enhance the intrinsic fluorescence of GO in the blue-green part of the visible light spectrum. Fluorescence enhancement has been attributed to the catalytic role of palladium nanoparticles in increasing the number of sp2 bonds of GO with the molecules of the surrounding media. It is shown that palladium nanoparticles could be the nanoparticle of choice for fluorescence enhancement of GO because of their catalytic role in sp2 bond formation.
Keywords:  graphene oxide      Pd nanoparticles      fluorescence  
Received:  10 February 2016      Revised:  15 July 2016      Accepted manuscript online: 
PACS:  78.67.Wj (Optical properties of graphene)  
  78.67.Bf (Nanocrystals, nanoparticles, and nanoclusters)  
  87.64.kv (Fluorescence)  
Corresponding Authors:  M R RashidianVaziri     E-mail:  rezaeerv@gmail.com

Cite this article: 

A Omidvar, M R RashidianVaziri, B Jaleh, N Partovi Shabestari, M Noroozi Metal-enhanced fluorescence of graphene oxide by palladium nanoparticles in the blue-green part of the spectrum 2016 Chin. Phys. B 25 118102

[1] Loh K P, Bao Q, Eda G and Chhowalla M 2010 Nat. Chem. 2 1015
[2] Fakhri P, Vaziri M R, Jaleh B and Shabestari N P 2015 J. Opt. 18 015502
[3] Jingfeng H, Larisika M, Hu C, Faulkner S, Nimmo M A, Nowak C and Yoong A T I 2014 Chin. Phys. B 23 088104
[4] Zhao J, Zhang G Y and Shi D X 2013 Chin. Phys. B 22 057701
[5] Kazemi E, Dadfarnia S, Shabani A M H, Abbasi A, Vaziri M R R and Behjat A 2016 Talanta 147 561
[6] Kazemi E, Shabani A M H, Dadfarnia S, Abbasi A, Vaziri M R R and Behjat A 2016 Anal. Chim. Acta 905 85
[7] Xu J, Liu J, Wu S, Yang Q H and Wang P 2012 Opt. Express 20 15474
[8] Yang J M, Yang Q, Lie J, Wang Y G and Tsang Y H 2013 Chin. Phys. B 22 094210
[9] Fakhri P, Nasrollahzadeh M and Jaleh B 2014 RSC Adv. 4 48691
[10] Luo Z, Vora P M, Mele E J, Johnson A C and Kikkawa J M 2009 Appl. Phys. Lett. 94 111909
[11] Eda G, Lin Y Y, Mattevi C, Yamaguchi H, Chen H A, Chen I S, Chen C W and Chhowalla M 2010 Adv. Mater. 22 505
[12] Cuong T V, Pham V H, Tran Q T, Hahn S H, Chung J S, Shin E W and Kim E J 2010 Mater. Lett. 64 399
[13] Chen J L and Yan X P 2010 J. Mater. Chem. 20 4328
[14] Hu Y, He D W, Wang Y S, Duan J H, Wang S F, Fu M and Wang W S 2014 Chin. Phys. B 23 128103
[15] Demichelis F, Schreiter S and Tagliaferro A 1995 Phys. Rev. B 51 2143
[16] Robertson J and Amaratunga G 1996 J. Appl. Phys. 80 2998
[17] Koos M, Veres M, Füle M and Pocsik I 2002 Diamond Relat. Mater. 11 53
[18] Dong H, Gao W, Yan F, Ji H and Ju H 2010 Anal. Chem. 82 5511
[19] Chen J L and Yan X P 2011 Chem. Commun. 47 3135
[20] Gill R, Tian L, Somerville W R, Le Ru E C, van Amerongen H and Subramaniam V 2012 J. Phys. Chem. C 116 16687
[21] Chen Y, Munechika K and Ginger D S 2007 Nano Lett. 7 690
[22] Aslan K, Huang J, Wilson G M and Geddes C D 2006 J. Am. Chem. Soc. 128 4206
[23] Aslan K, Holley P and Geddes C D 2006 J. Mater. Chem. 16 2846
[24] Geddes C D and Lakowicz J R 2002 J. Fluoresc. 12 121
[25] Li C, Zhu Y, Zhang X, Yang X and Li C 2012 RSC Adv. 2 1765
[26] Zhu S, Zhang J, Tang S, Qiao C, Wang L, Wang H, Liu X, Li B, Li Y and Yu W 2012 Adv. Funct. Mater. 22 4732
[27] Pan D, Zhang J, Li Z and Wu M 2010 Adv. Mater. 22 734
[28] Liu S, Wang L, Tian J, Zhai J, Luo Y, Lu W and Sun X 2011 RSC Adv. 1 951
[29] Li L, Wu G, Yang G, Peng J, Zhao J and Zhu J J 2013 Nanoscale 5 4015
[30] Zhu S, Zhang J, Wang L, Song Y, Zhang G, Wang H and Yang B 2012 Chem. Commun. 48 10889
[31] Zhu S, Zhang J, Liu X, Li B, Wang X, Tang S, Meng Q, Li Y, Shi C and Hu R 2012 Rsc Adv. 2 2717
[32] Ran C, Wang M, Gao W, Yang Z, Shao J, Deng J and Song X 2014 RSC Adv. 4 21772
[33] Li C, Zhu Y, Wang S, Zhang X, Yang X and Li C 2014 J. Fluores. 24 137
[34] Zhang J, Fu Y, Liang D, Zhao R Y and Lakowicz J R 2008 Langmuir 24 12452
[35] Fihri A, Bouhrara M, Nekoueishahraki B, Basset J M and Polshettiwar V 2011 Chem. Soc. Rev. 40 5181
[36] Mandali P K and Chand D K 2013 Catal. Commun. 31 16
[37] Heugebaert T S, De Corte S, Sabbe T, Hennebel T, Verstraete W, Boon N and Stevens C V 2012 Tetrahedron Lett. 53 1410
[38] Ganesan M, Freemantle R G and Obare S O 2007 Chem. Mater. 19 3464
[39] Balanta A, Godard C and Claver C 2011 Chem. Soc. Rev. 40 4973
[40] Keum D, Kim S and Kim Y 2014 Chem. Commun. 50 1268
[41] Mann G, Hartwig J F, Driver M S and Fernández-Rivas C 1998 J. Am. Chem. Soc. 120 827
[42] Hummers Jr W S and Offeman R E 1958 J. Am. Chem. Soc. 80 1339
[43] Kovtyukhova N I, Ollivier P J, Martin B R, Mallouk T E, Chizhik S A, Buzaneva E V and Gorchinskiy A D 1999 Chem. Mater. 11 771
[44] Lakowicz J R 1999 Principles of Fluorescence Spectroscopy (Springer) pp. 25-61
[45] Ganeev R, Boltaev G, Tugushev R and Usmanov T 2010 Appl. Phys. B 100 571
[46] Mie G 1908 Ann. Phys. 25 377
[47] Hulst H C and Van De Hulst H 1957 Light Scattering by Small Particles(Courier Corporation)
[48] Jain P K, Lee K S, El-Sayed I H and El-Sayed M A 2006 J. Phys. Chem. B 110 7238
[49] Sullivan B T 1990 Appl. Opt. 29 1964
[50] Averitt R, Sarkar D and Halas N 1997 Phys. Rev. Lett. 78 4217
[51] Pernites R, Vergara A, Yago A, Cui K and Advincula R 2011 Chem. Commun. 47 9810
[52] Tang Y, Huang F, Zhao W, Liu Z and Wan D 2012 J. Mater. Chem. 22 11257
[53] Du F P, Wang J J, Tang C Y, Tsui C P, Zhou X P, Xie X L and Liao Y G 2012 Nanotechnology 23 475704
[54] Kim K H, Yang M, Cho K M, Jun Y S, Lee S B and Jung H T 2013 Sci. Rep. 3 3251
[55] Chen H, Müller M B, Gilmore K J, Wallace G G and Li D 2008 Adv. Mater. 20 3557
[56] Yang D, Velamakanni A, Bozoklu G, Park S, Stoller M, Piner R D, Stankovich S, Jung I, Field D A and Ventrice C A 2009 Carbon 47 145
[57] Sokolov D A, Shepperd K R and Orlando T M 2010 J. Phys. Chem. Lett. 1 2633
[58] Kong B S, Geng J and Jung H T 2009 Chem. Commun. 16 2174
[59] El-Shall M S Heterogeneous Catalysis by Metal NanoparticlesSupported on Graphene:Graphene:Synthesis, Properties, and Phenomena (Ed. Rao C N R and Sood A K) (Weinheim, Germany:Wiley-VCH Verlag GmbH & Co. KGaA)
[60] Sun X, Liu Z, Welsher K, Robinson J T, Goodwin A, Zaric S and Dai H 2008 Nano Res. 1 203
[61] Subrahmanyam K, Kumar P, Nag A and Rao C 2010 Solid State Commun. 150 1774
[1] Investigation of spatial structure and sympathetic cooling in the 9Be+40Ca+ bi-component Coulomb crystals
Min Li(李敏), Yong Zhang(张勇), Qian-Yu Zhang(张乾煜), Wen-Li Bai(白文丽), Sheng-Guo He(何胜国), Wen-Cui Peng(彭文翠), and Xin Tong(童昕). Chin. Phys. B, 2023, 32(3): 036402.
[2] Adsorption dynamics of double-stranded DNA on a graphene oxide surface with both large unoxidized and oxidized regions
Mengjiao Wu(吴梦娇), Huishu Ma(马慧姝), Haiping Fang(方海平), Li Yang(阳丽), and Xiaoling Lei(雷晓玲). Chin. Phys. B, 2023, 32(1): 018701.
[3] Effect of different catalysts and growth temperature on the photoluminescence properties of zinc silicate nanostructures grown via vapor-liquid-solid method
Ghfoor Muhammad, Imran Murtaza, Rehan Abid, and Naeem Ahmad. Chin. Phys. B, 2022, 31(5): 057801.
[4] Laser-induced fluorescence experimental spectroscopy and theoretical calculations of uranium monoxide
Xi-Lin Bai(白西林), Xue-Dong Zhang(张雪东), Fu-Qiang Zhang(张富强), and Timothy C Steimle. Chin. Phys. B, 2022, 31(5): 053301.
[5] Photoelectrochemical activity of ZnO:Ag/rGO photo-anodes synthesized by two-steps sol-gel method
D Ben Jemia, M Karyaoui, M A Wederni, A Bardaoui, M V Martinez-Huerta, M Amlouk, and R Chtourou. Chin. Phys. B, 2022, 31(5): 058201.
[6] Surface-enhanced fluorescence and application study based on Ag-wheat leaves
Hongwen Cao(曹红文), Liting Guo(郭立婷), Zhen Sun(孙祯), Tifeng Jiao(焦体峰), and Mingli Wang(王明利). Chin. Phys. B, 2022, 31(3): 037803.
[7] Influence of intramolecular hydrogen bond formation sites on fluorescence mechanism
Hong-Bin Zhan(战鸿彬), Heng-Wei Zhang(张恒炜), Jun-Jie Jiang(江俊杰), Yi Wang(王一), Xu Fei(费旭), and Jing Tian(田晶). Chin. Phys. B, 2022, 31(3): 038201.
[8] Thermoelectric characteristics of flexible reduced graphene oxide/silver selenide nanowire composites prepared by a facile vacuum filtration process
Zuo Xiao(肖佐), Yong Du(杜永), Qiufeng Meng(孟秋风), and Lei Wang(王磊). Chin. Phys. B, 2022, 31(2): 028103.
[9] A novel natural surface-enhanced fluorescence system based on reed leaf as substrate for crystal violet trace detection
Hui-Ju Cao(曹会菊), Hong-Wen Cao(曹红文), Yue Li(李月), Zhen Sun(孙祯), Yun-Fan Yang(杨云帆), Ti-Feng Jiao(焦体峰), and Ming-Li Wang(王明利). Chin. Phys. B, 2022, 31(10): 107801.
[10] Synthesis of SiC/graphene nanosheet composites by helicon wave plasma
Jia-Li Chen(陈佳丽), Pei-Yu Ji(季佩宇), Cheng-Gang Jin(金成刚), Lan-Jian Zhuge(诸葛兰剑), and Xue-Mei Wu(吴雪梅). Chin. Phys. B, 2021, 30(7): 075201.
[11] Degenerate cascade fluorescence: Optical spectral-line narrowing via a single microwave cavity
Liang Hu(胡亮), Xiang-Ming Hu(胡响明), and Qing-Ping Hu(胡庆平). Chin. Phys. B, 2021, 30(6): 064211.
[12] Enhanced microwave absorption performance of MOF-derived hollow Zn-Co/C anchored on reduced graphene oxide
Yue Wang(王玥), Dawei He(何大伟), and Yongsheng Wang(王永生). Chin. Phys. B, 2021, 30(6): 067804.
[13] Investigation of fluorescence resonance energy transfer ultrafast dynamics in electrostatically repulsed and attracted exciton-plasmon systems
Hong-Yu Tu(屠宏宇), Ji-Chao Cheng(程基超), Gen-Cai Pan(潘根才), Lu Han(韩露), Bin Duan(段彬), Hai-Yu Wang(王海宇), Qi-Dai Chen(陈岐岱), Shu-Ping Xu(徐抒平), Zhen-Wen Dai(戴振文), and Ling-Yun Pan(潘凌云). Chin. Phys. B, 2021, 30(2): 027802.
[14] Theoretical verification of intermolecular hydrogen bond induced thermally activated delayed fluorescence in SOBF-Ome
Mu-Zhen Li(李慕臻), Fei-Yan Li(李飞雁), Qun Zhang(张群), Kai Zhang(张凯), Yu-Zhi Song(宋玉志), Jian-Zhong Fan(范建忠), Chuan-Kui Wang(王传奎), and Li-Li Lin(蔺丽丽). Chin. Phys. B, 2021, 30(12): 123302.
[15] Effects of temperature and pressure on OH laser-induced fluorescence exciting A-X (1,0) transition at high pressures
Xiaobo Tu(涂晓波), Linsen Wang(王林森), Xinhua Qi(齐新华), Bo Yan(闫博), Jinhe Mu(母金河), Shuang Chen(陈爽). Chin. Phys. B, 2020, 29(9): 093301.
No Suggested Reading articles found!