Please wait a minute...
Chin. Phys. B, 2016, Vol. 25(10): 107502    DOI: 10.1088/1674-1056/25/10/107502
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES Prev   Next  

Effect of exchange interaction in ferromagnetic superlattices: A Monte Carlo study

R Masrour, A Jabar
Laboratory of Materials, Processes, Environment and Quality, Cady Ayyed University, National School of Applied Sciences, 63 46000, Safi, Morocco
Abstract  The Monte Carlo simulation is used to investigate the magnetic properties of ferromagnetic superlattices through the Ising model. The reduced critical temperatures of the ferromagnetic superlattices are studied each as a function of layer thickness for different values of exchange interaction. The exchange interaction in each layer within the interface and the crystal field in the unit cell are studied. The magnetic coercive fields and magnetization remnants are obtained for different values of exchange interaction, different values of temperature and crystal field with fixed values of physical parameters.
Keywords:  Monte Carlo simulations      superlattice      critical temperature      magnetic coercive field  
Received:  06 January 2016      Revised:  14 February 2016      Accepted manuscript online: 
PACS:  75.40.Mg (Numerical simulation studies)  
  73.21.Cd (Superlattices)  
  68.35.Rh (Phase transitions and critical phenomena)  
  75.30.Cr-  
Corresponding Authors:  R Masrour     E-mail:  rachidmasrour@hotmail.com

Cite this article: 

R Masrour, A Jabar Effect of exchange interaction in ferromagnetic superlattices: A Monte Carlo study 2016 Chin. Phys. B 25 107502

[1] Dürr W, Taborelli M, Paul O, Germar R, Gudat W, Pescia D and Landolt M 1989 Phys. Rev. Lett. 62 206
[2] Huang F, Mankey G J, Kief M T and Willis R F 1993 J. Appl. Phys. 73 6760
[3] Baberschke K 1996 Appl. Phys. A 62 417
[4] Wilhelm F, Bovensiepen U, Scherz A, Poulopoulos P, Ney A, Wende H, Ceballos G and Baberschke K 2000 J. Magn. Magn. Mater. 222 163
[5] Verdier P, Ledue D and Patte R 2004 J. Magn. Magn. Mater. 271 355
[6] Du A, Ma Y and Wu Z H 2006 J. Magn. Magn. Mater. 305 233
[7] Tamion A, Ott F, Berche P E, Talbot E, Bordel C and Blavette D 2008 J. Magn. Magn. Mater. 320 2650
[8] Özüm S, Yalçın O, Erdem R, Bayrakdar H and Eker H N 2015 J. Magn. Magn. Mater. 373 217
[9] Wang J T, Zhou L, Wang D S and Kawazoe Y 2000 Phys. Rev. B 62 3354
[10] Diaz-Ortiz A, Aguilera-Granja F and Moran-Lopez J L 1994 Solid State Commun. 914 35
[11] Ou J T, Wang F and Lin D L 1997 Phys. Rev. E 56 2805
[12] Saber M, Ainame A, Dujardin F and Stebe B 1999 Phys. Rev. B 59 6908
[13] Kaneyoshi T and Shin S 2000 Phys. State Solidi B 218 537
[14] Kaneyoshi T and Jaščur M 1994 Physica A 203 316
[15] Kaneyoshi T and Jaščur M 1993 J. Magn. Magn. Mater. 118 17
[16] Jaščur M and Kaneyoshi T 1995 J. Magn. Magn. Mater. 140-144 488
[17] Honda S and Nawate M 1994 J. Magn. Magn. Mater. 136 163
[18] Masrour R, Hamedoun M and Benyoussef A 2012 Appl. Surf. Sci. 258 1902
[19] Masrour R, Bahmad L, Hamedoun M, Benyoussef A and Hlil E K 2014 Phys. Lett. A 378 276
[20] Yüksel Y 2013 Phys. Lett. A 377 2494
[21] Masrour R, Bahmad L and Benyoussef A 2013 Chin. Phys. B 22 057504
[22] Bakrim H, Bouslykhane K, Hamedoun M, Hourmatallah A and Benzakour N 2004 Surf. Sci. 569 219
[23] Zhang Q and Wei GZ 2002 J. Magn. Magn. Mater. 253 96
[24] YükselY and AkıncıÜ 2015 Physica B 462 54
[25] Bakrim H, Hamedoun M and Hourmatallah A 2003 J. Magn. Magn. Mater. 261 415
[26] Masrour R, Jabar A, Benyoussef A, Hamedoun M and Bahmad L 2015 Physica B 472 19
[27] Yuksel Y, Aydıner E and Polat H 2011 J. Magn. Magn. Mater. 323 3168
[28] Ilkovic V 1998 Thin Solid Films 312 280
[29] Tucker J W, Sarmento E F and Cressoni J C 1995 J. Magn. Magn. Mater. 147 24
[30] Peng D L, Sumiyama K, Yamamuro S, Hihara T and Konno T J 1999 Phys. Stat. Sol. (a) 172 209
[31] Santoro R P and Newnham R E 1967 Acta Crystallogr. 22 344
[32] Szabó G and Kádár G 1998 Phys. Rev. B 58 5584
[33] Cheng S F, Mansour A N, Teter J P, Hathaway K D and Kabacoff L T 1993 Phys. Rev. B 47 206
[34] Cebollada A, Martnez J L, Gallego J M, de Miguel J J, Miranda R, Ferrer S, Batallán F, Fillion G and Rebouillat J P 1989 Phys. Rev. B 39 9726
[35] Xiao G and Chien C L 1987 J. Appl. Phys. 61 4061
[36] Sill L R, Brodsky M D, Bowen S and Hamaker H C 1985 J. Appl. Phys. 57 3663
[37] Fu C L and Freeman A J 1987 Phys. Rev. B 35 925
[38] Freemann A J, Xu J H and Jarlborg T 1983 J. Magn. Magn. Mater. 31 909
[39] Yu A C C, Mizuno M, Sasaki Y and Kondo H 2002 Appl. Phys. Lett. 81 3768
[40] Keskin M, Sarh N and Deviren B 2011 Solid State Commun. 151 1025
[41] Marcano N, Gómez S J C, Espeso J I, De T J M, Algarabel P A, Paulsen C and Iglesias J R 2007 Phys. Rev. Lett. 98 166406
[42] Cerisier M, Attenborough K, Celis J P and Van Haesendonck C 2000 Appl. Surf. Sci. 166 154
[43] Tang X T, Wang G and Shima M 2006 J. Appl. Phys. 99 123910
[1] Strain compensated type II superlattices grown by molecular beam epitaxy
Chao Ning(宁超), Tian Yu(于天), Rui-Xuan Sun(孙瑞轩), Shu-Man Liu(刘舒曼), Xiao-Ling Ye(叶小玲), Ning Zhuo(卓宁), Li-Jun Wang(王利军), Jun-Qi Liu(刘俊岐), Jin-Chuan Zhang(张锦川), Shen-Qiang Zhai(翟慎强), and Feng-Qi Liu(刘峰奇). Chin. Phys. B, 2023, 32(4): 046802.
[2] High-performance extended short-wavelength infrared PBn photodetectors based on InAs/GaSb/AlSb superlattices
Junkai Jiang(蒋俊锴), Faran Chang(常发冉), Wenguang Zhou(周文广), Nong Li(李农), Weiqiang Chen(陈伟强), Dongwei Jiang(蒋洞微), Hongyue Hao(郝宏玥), Guowei Wang(王国伟), Donghai Wu(吴东海), Yingqiang Xu(徐应强), and Zhi-Chuan Niu(牛智川). Chin. Phys. B, 2023, 32(3): 038503.
[3] Growth of high material quality InAs/GaSb type-II superlattice for long-wavelength infrared range by molecular beam epitaxy
Fang-Qi Lin(林芳祁), Nong Li(李农), Wen-Guang Zhou(周文广), Jun-Kai Jiang(蒋俊锴), Fa-Ran Chang(常发冉), Yong Li(李勇), Su-Ning Cui(崔素宁), Wei-Qiang Chen(陈伟强), Dong-Wei Jiang(蒋洞微), Hong-Yue Hao(郝宏玥), Guo-Wei Wang(王国伟), Ying-Qiang Xu(徐应强), and Zhi-Chuan Niu(牛智川). Chin. Phys. B, 2022, 31(9): 098504.
[4] Two-dimensional Sb cluster superlattice on Si substrate fabricated by a two-step method
Runxiao Zhang(张润潇), Zi Liu(刘姿), Xin Hu(胡昕), Kun Xie(谢鹍), Xinyue Li(李新月), Yumin Xia(夏玉敏), and Shengyong Qin(秦胜勇). Chin. Phys. B, 2022, 31(8): 086801.
[5] Precisely controlling the twist angle of epitaxial MoS2/graphene heterostructure by AFM tip manipulation
Jiahao Yuan(袁嘉浩), Mengzhou Liao(廖梦舟), Zhiheng Huang(黄智恒), Jinpeng Tian(田金朋), Yanbang Chu(褚衍邦), Luojun Du(杜罗军), Wei Yang(杨威), Dongxia Shi(时东霞), Rong Yang(杨蓉), and Guangyu Zhang(张广宇). Chin. Phys. B, 2022, 31(8): 087302.
[6] Wet etching and passivation of GaSb-based very long wavelength infrared detectors
Xue-Yue Xu(许雪月), Jun-Kai Jiang(蒋俊锴), Wei-Qiang Chen(陈伟强), Su-Ning Cui(崔素宁), Wen-Guang Zhou(周文广), Nong Li(李农), Fa-Ran Chang(常发冉), Guo-Wei Wang(王国伟), Ying-Qiang Xu(徐应强), Dong-Wei Jiang(蒋洞微), Dong-Hai Wu(吴东海), Hong-Yue Hao(郝宏玥), and Zhi-Chuan Niu(牛智川). Chin. Phys. B, 2022, 31(6): 068503.
[7] First-principles study of stability of point defects and their effects on electronic properties of GaAs/AlGaAs superlattice
Shan Feng(冯山), Ming Jiang(姜明), Qi-Hang Qiu(邱启航), Xiang-Hua Peng(彭祥花), Hai-Yan Xiao(肖海燕), Zi-Jiang Liu(刘子江), Xiao-Tao Zu(祖小涛), and Liang Qiao(乔梁). Chin. Phys. B, 2022, 31(3): 036104.
[8] Interface effect on superlattice quality and optical properties of InAs/GaSb type-II superlattices grown by molecular beam epitaxy
Zhaojun Liu(刘昭君), Lian-Qing Zhu(祝连庆), Xian-Tong Zheng(郑显通), Yuan Liu(柳渊), Li-Dan Lu(鹿利单), and Dong-Liang Zhang(张东亮). Chin. Phys. B, 2022, 31(12): 128503.
[9] Monte Carlo simulations of electromagnetically induced transparency in a square lattice of Rydberg atoms
Shang-Yu Zhai(翟尚宇) and Jin-Hui Wu(吴金辉). Chin. Phys. B, 2021, 30(7): 074206.
[10] Emergent O(4) symmetry at the phase transition from plaquette-singlet to antiferromagnetic order in quasi-two-dimensional quantum magnets
Guangyu Sun(孙光宇), Nvsen Ma(马女森), Bowen Zhao(赵博文), Anders W. Sandvik, and Zi Yang Meng(孟子杨). Chin. Phys. B, 2021, 30(6): 067505.
[11] Excellent thermoelectric performance predicted in Sb2Te with natural superlattice structure
Pei Zhang(张培), Tao Ouyang(欧阳滔), Chao Tang(唐超), Chaoyu He(何朝宇), Jin Li(李金), Chunxiao Zhang(张春小), and Jianxin Zhong(钟建新). Chin. Phys. B, 2021, 30(12): 128401.
[12] Moiré superlattice modulations in single-unit-cell FeTe films grown on NbSe2 single crystals
Han-Bin Deng(邓翰宾), Yuan Li(李渊), Zili Feng(冯子力), Jian-Yu Guan(关剑宇), Xin Yu(于鑫), Xiong Huang(黄雄), Rui-Zhe Liu(刘睿哲), Chang-Jiang Zhu(朱长江), Limin Liu(刘立民), Ying-Kai Sun(孙英开), Xi-Liang Peng(彭锡亮), Shuai-Shuai Li(李帅帅), Xin Du(杜鑫), Zheng Wang(王铮), Rui Wu(武睿), Jia-Xin Yin(殷嘉鑫), You-Guo Shi(石友国), and Han-Qing Mao(毛寒青). Chin. Phys. B, 2021, 30(12): 126801.
[13] Extended phase diagram of La1-xCaxMnO3 by interfacial engineering
Kexuan Zhang(张可璇), Lili Qu(屈莉莉), Feng Jin(金锋), Guanyin Gao(高关胤), Enda Hua(华恩达), Zixun Zhang(张子璕), Lingfei Wang(王凌飞), and Wenbin Wu(吴文彬). Chin. Phys. B, 2021, 30(12): 126802.
[14] Temperature effects of GaAs/Al0.45Ga0.55As superlattices on chaotic oscillation
Xiao-Peng Luo(罗晓朋), Yan-Fei Liu(刘延飞), Dong-Dong Yang(杨东东), Cheng Chen(陈诚), Xiu-Jian Li(李修建), and Jie-Pan Ying(应杰攀). Chin. Phys. B, 2021, 30(10): 106805.
[15] Electric gating of the multichannel conduction in LaAlO3/SrTiO3 superlattices
Shao-Jin Qi(齐少锦), Xuan Sun(孙璇), Xi Yan(严曦), Hui Zhang(张慧), Hong-Rui Zhang(张洪瑞), Jin-E Zhang(张金娥), Hai-Lin Huang(黄海林), Fu-Rong Han(韩福荣), Jing-Hua Song(宋京华), Bao-Gen Shen(沈保根), and Yuan-Sha Chen(陈沅沙). Chin. Phys. B, 2021, 30(1): 017301.
No Suggested Reading articles found!