CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES |
Prev
Next
|
|
|
Effect of exchange interaction in ferromagnetic superlattices: A Monte Carlo study |
R Masrour, A Jabar |
Laboratory of Materials, Processes, Environment and Quality, Cady Ayyed University, National School of Applied Sciences, 63 46000, Safi, Morocco |
|
|
Abstract The Monte Carlo simulation is used to investigate the magnetic properties of ferromagnetic superlattices through the Ising model. The reduced critical temperatures of the ferromagnetic superlattices are studied each as a function of layer thickness for different values of exchange interaction. The exchange interaction in each layer within the interface and the crystal field in the unit cell are studied. The magnetic coercive fields and magnetization remnants are obtained for different values of exchange interaction, different values of temperature and crystal field with fixed values of physical parameters.
|
Received: 06 January 2016
Revised: 14 February 2016
Accepted manuscript online:
|
PACS:
|
75.40.Mg
|
(Numerical simulation studies)
|
|
73.21.Cd
|
(Superlattices)
|
|
68.35.Rh
|
(Phase transitions and critical phenomena)
|
|
75.30.Cr-
|
|
|
Corresponding Authors:
R Masrour
E-mail: rachidmasrour@hotmail.com
|
Cite this article:
R Masrour, A Jabar Effect of exchange interaction in ferromagnetic superlattices: A Monte Carlo study 2016 Chin. Phys. B 25 107502
|
[1] |
Dürr W, Taborelli M, Paul O, Germar R, Gudat W, Pescia D and Landolt M 1989 Phys. Rev. Lett. 62 206
|
[2] |
Huang F, Mankey G J, Kief M T and Willis R F 1993 J. Appl. Phys. 73 6760
|
[3] |
Baberschke K 1996 Appl. Phys. A 62 417
|
[4] |
Wilhelm F, Bovensiepen U, Scherz A, Poulopoulos P, Ney A, Wende H, Ceballos G and Baberschke K 2000 J. Magn. Magn. Mater. 222 163
|
[5] |
Verdier P, Ledue D and Patte R 2004 J. Magn. Magn. Mater. 271 355
|
[6] |
Du A, Ma Y and Wu Z H 2006 J. Magn. Magn. Mater. 305 233
|
[7] |
Tamion A, Ott F, Berche P E, Talbot E, Bordel C and Blavette D 2008 J. Magn. Magn. Mater. 320 2650
|
[8] |
Özüm S, Yalçın O, Erdem R, Bayrakdar H and Eker H N 2015 J. Magn. Magn. Mater. 373 217
|
[9] |
Wang J T, Zhou L, Wang D S and Kawazoe Y 2000 Phys. Rev. B 62 3354
|
[10] |
Diaz-Ortiz A, Aguilera-Granja F and Moran-Lopez J L 1994 Solid State Commun. 914 35
|
[11] |
Ou J T, Wang F and Lin D L 1997 Phys. Rev. E 56 2805
|
[12] |
Saber M, Ainame A, Dujardin F and Stebe B 1999 Phys. Rev. B 59 6908
|
[13] |
Kaneyoshi T and Shin S 2000 Phys. State Solidi B 218 537
|
[14] |
Kaneyoshi T and Jaščur M 1994 Physica A 203 316
|
[15] |
Kaneyoshi T and Jaščur M 1993 J. Magn. Magn. Mater. 118 17
|
[16] |
Jaščur M and Kaneyoshi T 1995 J. Magn. Magn. Mater. 140-144 488
|
[17] |
Honda S and Nawate M 1994 J. Magn. Magn. Mater. 136 163
|
[18] |
Masrour R, Hamedoun M and Benyoussef A 2012 Appl. Surf. Sci. 258 1902
|
[19] |
Masrour R, Bahmad L, Hamedoun M, Benyoussef A and Hlil E K 2014 Phys. Lett. A 378 276
|
[20] |
Yüksel Y 2013 Phys. Lett. A 377 2494
|
[21] |
Masrour R, Bahmad L and Benyoussef A 2013 Chin. Phys. B 22 057504
|
[22] |
Bakrim H, Bouslykhane K, Hamedoun M, Hourmatallah A and Benzakour N 2004 Surf. Sci. 569 219
|
[23] |
Zhang Q and Wei GZ 2002 J. Magn. Magn. Mater. 253 96
|
[24] |
YükselY and AkıncıÜ 2015 Physica B 462 54
|
[25] |
Bakrim H, Hamedoun M and Hourmatallah A 2003 J. Magn. Magn. Mater. 261 415
|
[26] |
Masrour R, Jabar A, Benyoussef A, Hamedoun M and Bahmad L 2015 Physica B 472 19
|
[27] |
Yuksel Y, Aydıner E and Polat H 2011 J. Magn. Magn. Mater. 323 3168
|
[28] |
Ilkovic V 1998 Thin Solid Films 312 280
|
[29] |
Tucker J W, Sarmento E F and Cressoni J C 1995 J. Magn. Magn. Mater. 147 24
|
[30] |
Peng D L, Sumiyama K, Yamamuro S, Hihara T and Konno T J 1999 Phys. Stat. Sol. (a) 172 209
|
[31] |
Santoro R P and Newnham R E 1967 Acta Crystallogr. 22 344
|
[32] |
Szabó G and Kádár G 1998 Phys. Rev. B 58 5584
|
[33] |
Cheng S F, Mansour A N, Teter J P, Hathaway K D and Kabacoff L T 1993 Phys. Rev. B 47 206
|
[34] |
Cebollada A, Martnez J L, Gallego J M, de Miguel J J, Miranda R, Ferrer S, Batallán F, Fillion G and Rebouillat J P 1989 Phys. Rev. B 39 9726
|
[35] |
Xiao G and Chien C L 1987 J. Appl. Phys. 61 4061
|
[36] |
Sill L R, Brodsky M D, Bowen S and Hamaker H C 1985 J. Appl. Phys. 57 3663
|
[37] |
Fu C L and Freeman A J 1987 Phys. Rev. B 35 925
|
[38] |
Freemann A J, Xu J H and Jarlborg T 1983 J. Magn. Magn. Mater. 31 909
|
[39] |
Yu A C C, Mizuno M, Sasaki Y and Kondo H 2002 Appl. Phys. Lett. 81 3768
|
[40] |
Keskin M, Sarh N and Deviren B 2011 Solid State Commun. 151 1025
|
[41] |
Marcano N, Gómez S J C, Espeso J I, De T J M, Algarabel P A, Paulsen C and Iglesias J R 2007 Phys. Rev. Lett. 98 166406
|
[42] |
Cerisier M, Attenborough K, Celis J P and Van Haesendonck C 2000 Appl. Surf. Sci. 166 154
|
[43] |
Tang X T, Wang G and Shima M 2006 J. Appl. Phys. 99 123910
|
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|