|
|
Large linear magnetoresistance in a new Dirac material BaMnBi2 |
Yi-Yan Wang(王义炎)1,2, Qiao-He Yu(郁巧鹤)1,2, Tian-Long Xia(夏天龙)1,2 |
1 Department of Physics, Renmin University of China, Beijing 100872, China;
2 Beijing Key Laboratory of Opto-electronic Functional Materials & Micro-nano Devices, Renmin University of China, Beijing 100872, China |
|
|
Abstract Dirac semimetal is a class of materials that host Dirac fermions as emergent quasi-particles. Dirac cone-type band structure can bring interesting properties such as quantum linear magnetoresistance and large mobility in the materials. In this paper, we report the synthesis of high quality single crystals of BaMnBi2 and investigate the transport properties of the samples. BaMnBi2 is a metal with an antiferromagnetic transition at TN=288 K. The temperature dependence of magnetization displays different behavior from CaMnBi2 and SrMnBi2, which suggests the possible different magnetic structure of BaMnBi2. The Hall data reveals electron-type carriers and a mobility μ(5 K)=1500 cm2/V·s. Angle-dependent magnetoresistance reveals the quasi-two-dimensional (2D) Fermi surface in BaMnBi2. A crossover from semiclassical MR~H2 dependence in low field to MR~H dependence in high field, which is attributed to the quantum limit of Dirac fermions, has been observed in magnetoresistance. Our results indicate the existence of Dirac fermions in BaMnBi2.
|
Received: 23 June 2016
Revised: 04 August 2016
Accepted manuscript online:
|
PACS:
|
75.47.-m
|
(Magnetotransport phenomena; materials for magnetotransport)
|
|
73.43.Qt
|
(Magnetoresistance)
|
|
75.30.Gw
|
(Magnetic anisotropy)
|
|
Fund: Project supported by the National Natural Science Foundation of China (Grant No. 11574391), the Fundamental Research Funds for the Central Universities, and the Research Funds of Renmin University of China (Grant No. 14XNLQ07). |
Corresponding Authors:
Tian-Long Xia
E-mail: tlxia@ruc.edu.cn
|
Cite this article:
Yi-Yan Wang(王义炎), Qiao-He Yu(郁巧鹤), Tian-Long Xia(夏天龙) Large linear magnetoresistance in a new Dirac material BaMnBi2 2016 Chin. Phys. B 25 107503
|
[1] |
Wehling T O, Black-Schaffer A M and Balatsky A V 2014 Adv. Phys. 63 1
|
[2] |
Castro Neto A H, Guinea F, Peres N M R, Novoselov K S and Geim A K 2009 Rev. Mod. Phys. 81 109
|
[3] |
Hasan M Z and Kane C L 2010 Rev. Mod. Phys. 82 3045
|
[4] |
Qi X L and Zhang S C 2011 Rev. Mod. Phys. 83 1057
|
[5] |
Liu Z K, Zhou B, Zhang Y, Wang Z J, Weng H M, Prabhakaran D, Mo S K, Shen Z X, Fang Z, Dai X, Hussain Z and Chen Y L 2014 Science 343 864
|
[6] |
Borisenko S, Gibson Q, Evtushinsky D, Zabolotnyy V, Büchner B and Cava R J 2014 Phys. Rev. Lett. 113 027603
|
[7] |
Neupane M, Xu S Y, Sankar R, Alidoust N, Bian G, Liu C, Belopolski I, Chang T R, Jeng H T, Lin H, Bansil A, Chou F and Hasan M Z 2014 Nat. Commun. 5 3786
|
[8] |
Liang T, Gibson Q, Ali M N, Liu M, Cava R J and Ong N P 2015 Nat. Mater. 14 280
|
[9] |
He L P, Hong X C, Dong J K, Pan J, Zhang Z, Zhang J and Li S Y 2014 Phys. Rev. Lett. 113 246402
|
[10] |
Wan X, Turner A M, Vishwanath A and Savrasov S Y 2011 Phys. Rev. B 83 205101
|
[11] |
Lv B Q, Weng H M, Fu B B, Wang X P, Miao H, Ma J, Richard P, Huang X C, Zhao L X, Chen G F, Fang Z, Dai X, Qian T and Ding H 2015 Phys. Rev. X 5 031013
|
[12] |
Xu S Y, Belopolski I, Alidoust N, et al. 2015 Science 349 613
|
[13] |
Lv B Q, Xu N, Weng H M, Ma J Z, Richard P, Huang X C, Zhao L X, Chen G F, Matt C E, Bisti F, Strocov V N, Mesot J, Fang Z, Dai X, Qian T, Shi M and Ding H 2015 Nat. Phys. 11 724
|
[14] |
Huang X, Zhao L, Long Y, Wang P, Chen D, Yang Z, Liang H, Xue M, Weng H, Fang Z, Dai X and Chen G 2015 Phys. Rev. X 5 031023
|
[15] |
Yang L, Liu Z K, Sun Y, Peng H, Yang H F, Zhang T, Zhou B, Zhang Y, Guo Y F, Rahn M, Prabhakaran D, Hussain Z, Mo S K, Felser C, Yan B and Chen Y L 2015 Nat. Phys. 11 728
|
[16] |
Huang S M, Xu S Y, Belopolski I, Lee C C, Chang G, Wang B K, Alidoust N, Bian G, Neupane M, Zhang C, Jia S, Bansil A, Lin H and Hasan M Z 2015 Nat. Commun. 6 7373
|
[17] |
Xu S Y, Belopolski I, Sanchez Daniel S, et al. 2015 Sci. Adv. 1 e1501092
|
[18] |
Weng H, Fang C, Fang Z, Bernevig B A and Dai X 2015 Phys. Rev. X 5 011029
|
[19] |
Liu Z K, Yang L X, Sun Y, Zhang T, Peng H, Yang H F, Chen C, Zhang Y, Guo Y F, Prabhakaran D, Schmidt M, Hussain Z, Mo S K, Felser C, Yan B and Chen Y L 2016 Nat. Mater. 15 27
|
[20] |
Shekhar C, Nayak A K, Sun Y, Schmidt M, Nicklas M, Leermakers I, Zeitler U, Skourski Y, Wosnitza J, Liu Z, Chen Y, Schnelle W, Borrmann H, Grin Y, Felser C and Yan B 2015 Nat. Phys. 11 645
|
[21] |
Arnold F, Shekhar C, Wu S C, Sun Y, Ricardo D d R, Kumar N, Naumann M, Ajeesh M O, Schmidt M, Grushin A G, Bardarson J H, Baenitz M, Sokolov D, Borrmann H, Nicklas M, Felser C, Hassinger E and Yan B 2016 Nat. Commun. 7 11615
|
[22] |
Yang X, Liu Y, Wang Z, Zheng Y and Xu Z 2015 arXiv:1506.03190v1 [cond-mat.mtrl-sci]
|
[23] |
Sun Y, Wu S C and Yan B 2015 Phys. Rev. B 92 115428
|
[24] |
Zhang J, Liu F L, Dong J K, Xu Y, Li N N, Yang W G and Li S Y 2015 Chin. Phys. Lett. 32 097102
|
[25] |
Zhang Y, Tan Y W, Stormer H L and Kim P 2005 Nature 438 201
|
[26] |
Miller D L, Kubista K D, Rutter G M, Ruan M, de Heer W A, First P N and Stroscio J A 2009 Science 324 924
|
[27] |
Wang K, Graf D, Wang L, Lei H, Tozer S W, Petrovic C 2012 Phys. Rev. B 85 041101
|
[28] |
He J B, Wang D M and Chen G F 2012 Appl. Phys. Lett. 100 112405
|
[29] |
Feng Ya, Wang Z, Chen C, et al. 2014 2014 Sci. Rep. 4 5385
|
[30] |
Lee G, Farhan M A, Kim J S and Shim J H 2013 Phys. Rev. B 87 245104
|
[31] |
Park J, Lee G, Wolff-Fabris F, et al. 2011 Phys. Rev. Lett. 107 126402
|
[32] |
Wang K, Graf D, Lei H, Tozer S W and Petrovic C 2011 Phys. Rev. B 84 220401
|
[33] |
Wang J K, Zhao L L, Yin Q, Kotliar G, Kim M S, Aronson M C and Morosan E 2011 Phys. Rev. B 84 064428
|
[34] |
Guo Y F, Princep A J, Zhang X, et al. 2014 Phys. Rev. B 90 075120
|
[35] |
Masuda H, Sakai H, Tokunaga M, et al. 2016 Sci. Adv. 2 e1501117
|
[36] |
May A F, McGuire M A, Sales B C 2014 Phys. Rev. B 90 075109
|
[37] |
Wang K, Graf D and Petrovic C 2013 Phys. Rev. B 87 235101
|
[38] |
Borisenko S, Evtushinsky D, Gibson Q, Yaresko A, Kim T, Ali M, Buechner B, Hoesch M and Cava R J 2015 arXiv: 1507.04847v2 [cond-mat.mes-hall]
|
[39] |
Liu J Y, Hu J, Zhang Q, Graf D, Cao H B, Radmanesh S M A, Adams D J, Zhu Y L, Chen G F, Liu X, Wei J, Tennant D A, DiTusa J F, Chiorescu I, Spinu L and Mao Z Q 2015 arXiv: 1507.07978v2 [cond-mat.mtrl-sci]
|
[40] |
Cordier G and Schäfer H 1977 Z. Naturforsch. 32 383
|
[41] |
Zhang G M, Su Y H, Lu Z Y, Weng Z Y, Lee D H and Xiang T 2009 Europhys. Lett. 86 37006
|
[42] |
Abrikosov A A and Beknazarov A 1988 Fundamentals of the Theory of Metals (Amsterdam: North Holland)
|
[43] |
Abrikosov A A 1998 Phys. Rev. B 58 2788
|
[44] |
Abrikosov A A 2000 Europhys. Lett. 49 789
|
[45] |
Hu J and Rosenbaum T 2008 Nat. Mater. 7 697
|
[46] |
Lee M, Rosenbaum T F, Saboungi M L and Schnyders H S 2002 Phys. Rev. Lett. 88 066602
|
[47] |
Huynh, Khuong K. and Tanabe, Yoichi and Tanigaki, Katsumi 2011 Phys. Rev. Lett. 106 217004
|
[48] |
Li L, Wang K, Graf D, Wang L, Wang A and Petrovic C 2016 Phys. Rev. B 93 115141
|
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|