Special Issue:
TOPICAL REVIEW — Silicene
|
|
|
Silicene on substrates: A theoretical perspective |
Zhong Hong-Xia (钟红霞)a c, Quhe Ru-Ge (屈贺如歌)a d e f, Wang Yang-Yang (王洋洋)a g, Shi Jun-Jie (史俊杰)a, Lü Jin (吕劲)a b |
a State Key Laboratory for Mesoscopic Physics and School of Physics, Peking University, Beijing 100871, China;
b Collaborative Innovation Center of Quantum Matter, Beijing 100871, China;
c Department of Physics, Washington University in St. Louis, St. Louis, Missouri 63130, USA;
d Academy for Advanced Interdisciplinary Studies, Peking University, Beijing 100871, China;
e State Key Laboratory of Information Photonics and Optical Communications, Beijing University of Posts and Telecommunications, Beijing 100876, China;
f School of Science, Beijing University of Posts and Telecommunications, Beijing 100876, China;
g Department of Nuclear Science and Engineering and Department of Materials Science and Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA |
|
|
Abstract Silicene, as the silicon analog of graphene, is successfully fabricated by epitaxially growing it on various substrates. Like free-standing graphene, free-standing silicene possesses a honeycomb structure and Dirac-cone-shaped energy band, resulting in many fascinating properties such as high carrier mobility, quantum spin Hall effect, quantum anomalous Hall effect, and quantum valley Hall effect. The existence of the honeycomb crystal structure and the Dirac cone of silicene is crucial for observation of its intrinsic properties. In this review, we systematically discuss the substrate effects on the atomic structure and electronic properties of silicene from a theoretical point of view, especially with emphasis on the changes of the Dirac cone.
|
Received: 09 June 2015
Revised: 02 July 2015
Accepted manuscript online:
|
PACS:
|
73.20.-r
|
(Electron states at surfaces and interfaces)
|
|
73.40.Ns
|
(Metal-nonmetal contacts)
|
|
68.35.Ct
|
(Interface structure and roughness)
|
|
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 11274016 and 11474012) and the National Basic Research Program of China (Grant Nos. 2013CB932604 and 2012CB619304). |
Corresponding Authors:
Lü Jin
E-mail: jinglu@pku.edu.cn
|
Cite this article:
Zhong Hong-Xia (钟红霞), Quhe Ru-Ge (屈贺如歌), Wang Yang-Yang (王洋洋), Shi Jun-Jie (史俊杰), Lü Jin (吕劲) Silicene on substrates: A theoretical perspective 2015 Chin. Phys. B 24 087308
|
[1] |
Cahangirov S, Topsakal M, Aktürk E, Şahin H and Ciraci S 2009 Phys. Rev. Lett. 102 236804
|
[2] |
Li X, Mullen J T, Jin Z, Borysenko K M, Buongiorno Nardelli M and Kim K W 2013 Phys. Rev. B 87 115418
|
[3] |
Shao Z G, Ye X S, Yang L and Wang C L 2013 J. Appl. Phys. 114 093712
|
[4] |
Quhe R, Zheng J, Luo G, Liu Q, Qin R, Zhou J, Yu D, Nagase S, Mei W N, Gao Z and Lu J 2012 NPG Asia Mater. 4 e6
|
[5] |
Drummond N D, Zólyomi V and Fal'ko V I 2013 Phys. Rev. B 85 075423
|
[6] |
Ni Z, Liu Q, Tang K, Zheng J, Zhou J, Qin R, Gao Z, Yu D and Lu J 2012 Nano Lett. 12 113
|
[7] |
Quhe R G, Fei R, Liu Q, Zheng J, Li H, Xu C, Ni Z, Wang Y, Yu D, Gao Z and Lu J 2012 Sci. Rep. 2 853
|
[8] |
Ni Z G, Zhong H, Jiang X, Quhe R G, Luo G, Wang Y, Ye M, Yang J, Shi J and Lu J 2014 Nanoscale 6 7609
|
[9] |
Zhu Y F, Dai Q Q, Zhao M and Jiang Q 2013 Sci. Rep. 3 1524
|
[10] |
Tao L, Cinquanta E, Chiappe D, Grazianetti C, Fanciulli M, Dubey M, Molle A and Akinwande D 2015 Nat. Nanotech. 10 227
|
[11] |
Gmitra M, Konschuh S, Ertler C, Ambrosch-Draxl C and Fabian J 2009 Phys. Rev. B 80 235431
|
[12] |
Liu C C, Feng W and Yao Y 2011 Phys. Rev. Lett. 107 076802
|
[13] |
Ezawa M 2012 Phys. Rev. Lett. 109 055502
|
[14] |
Pan H, Li Z, Liu C C, Zhu G, Qiao Z and Yao Y 2014 Phys. Rev. Lett. 112 106802
|
[15] |
Tsai W F, Huang C Y, Chang T R, Lin H, Jeng H T and Bansil A 2013 Nat. Commun. 4 1500
|
[16] |
Vogt P, De Padova P, Quaresima C, Avila J, Frantzeskakis E, Asensio M C, Resta A, Ealet B and Le Lay G 2012 Phys. Rev. Lett. 108 155501
|
[17] |
Feng B, Ding Z, Meng S, Yao Y, He X, Cheng P, Chen L and Wu K 2012 Nano Lett. 12 3507
|
[18] |
Fleurence A, Friedlein R, Ozaki T, Kawai H, Wang Y and Yamada-Takamura Y 2012 Phys. Rev. Lett. 108 245501
|
[19] |
Meng L, Wang Y, Zhang L, Du S, Wu R, Li L, Zhang Y, Li G, Zhou H, Hofer W A and Gao H J 2013 Nano Lett. 13 685
|
[20] |
Aizawa T, Suehara S and Otani S 2014 J. Phys. Chem. C 118 23049
|
[21] |
Chiappe D, Scalise E, Cinquanta E, Grazianetti C, van den Broek B, Fanciulli M, Houssa M and Molle A 2014 Adv. Mater. 26 2096
|
[22] |
Pflugradt P, Matthes L and Bechstedt F 2014 New J. Phys. 16 075004
|
[23] |
Paszkowska A and Krawiec M 2015 Phys. Chem. Chem. Phys. 17 2246
|
[24] |
Liu H, Gao J and Zhao J 2013 J. Phys. Chem. C 117 10353
|
[25] |
Scalise E, Houssa M, Cinquanta E, Grazianetti C, van den Broek B, Pourtois G, Stesmans A, Fanciulli M and Molle A 2014 2D Mater. 1 011010
|
[26] |
Zhu J and Schwingenschlogl U 2015 J. Mater. Chem. C 3 3946
|
[27] |
Cai Y, Chuu C P, Wei C M and Chou M Y 2013 Phys. Rev. B 88 245408
|
[28] |
Liu F, Liu C C, Wu K, Yang F and Yao Y 2013 Phys. Rev. Lett.111 066804
|
[29] |
Chen L, Feng B and Wu K 2013 Appl. Phys. Lett. 102 081602
|
[30] |
Kara A, Léandri C, Dávila M E, De Padova P, Ealet B, Oughaddou H, Aufray B and Le Lay G 2009 J. Supercond. Nov. Magn. 22 259
|
[31] |
Gao J and Zhao J 2012 Sci. Rep. 2 861
|
[32] |
Chiappe D, Grazianetti C, Tallarida G, Fanciulli M and Molle A 2012 Adv. Mater. 24 5088
|
[33] |
Lin C H, Arafune R, Kawahara K, Kanno M, Tsukahara N, Minamitani E, Kim Y, Kawai M and Takagi N 2013 Phys. Rev. Lett. 110 076801
|
[34] |
Lin C H, Arafune R, Kawahara K, Tsukahara N, Minamitani E, Kim Y, Takagi N and Kawai M 2012 Appl. Phys. Express 5 045802
|
[35] |
Jamgotchian H, Colignon Y, Hamzaoui N, Ealet B, Hoarau J Y, Aufray B and Biberian J P 2012 J. Phys: Condens. Matter 24 172001
|
[36] |
Lalmi B, Oughaddou H, Enriquez H, Kara A, Vizzini S, Ealet B and Aufray B 2010 Appl. Phys. Lett. 97 223109
|
[37] |
Chen L, Liu C C, Feng B, He X, Cheng P, Ding Z, Meng S, Yao Y and Wu K 2012 Phys. Rev. Lett. 109 056804
|
[38] |
Chen L, Li H, Feng B, Ding Z, Qiu J, Cheng P, Wu K and Meng S 2013 Phys. Rev. Lett. 110 085504
|
[39] |
Cahangirov S, Audiffred M, Tang P, Iacomino A, Duan W, Merino G and Rubio A 2013 Phys. Rev. B 88 035432
|
[40] |
Yuan Y, Quhe R G, Zheng J, Wang Y, Ni Z, Shi J and Lu J 2014 Physica E 58 38
|
[41] |
Gori P, Pulci O, Ronci F, Colonna S and Bechstedt F 2013 J. Appl. Phys. 114 113710
|
[42] |
Guo Z X, Furuya S, Iwata J I and Oshiyama A 2013 J. Phys. Soc. Jpn. 82 063714
|
[43] |
Guo Z X, Furuya S, Iwata J I and Oshiyama A 2013 Phys. Rev. B 87 235435
|
[44] |
Pflugradt P, Matthes L and Bechstedt F 2014 Phys. Rev. B 89 035403
|
[45] |
Wang Y P and Cheng H P 2013 Phys. Rev. B 87 245430
|
[46] |
Quhe R G, Yuan Y, Zheng J, Wang Y, Ni Z, Shi J, Yu D, Yang J and Lu J 2014 Sci. Rep. 4 5476
|
[47] |
Arafune R, Lin C L, Nagao R, Kawai M and Takagi N 2013 Phys. Rev. Lett. 110 229701
|
[48] |
Resta A, Leoni T, Barth C, Ranguis A, Becker C, Bruhn T, Vogt P and Le Lay G 2013 Sci. Rep. 3 2399
|
[49] |
Guo Z X and Oshiyama A 2014 Phys. Rev. B 89 155418
|
[50] |
Lee C C, Fleurence A, Friedlein R, Yamada-Takamura Y and Ozaki T 2013 Phys. Rev. B 88 165404
|
[51] |
Lee C C, Fleurence A, Yamada Takamura Y, Ozaki T and Friedlein R 2014 Phys. Rev. B 90 075422
|
[52] |
Wei W, Dai Y, Huang B, Whangbo M H and Jacob T 2015 J. Phys. Chem. Lett. 6 1065
|
[53] |
Hu W, Li Z and Yang J 2013 J. Chem. Phys. 139 154704
|
[54] |
Neek Amal M, Sadeghi A, Berdiyorov G R and Peeters F M 2013 Appl. Phys. Lett. 103 261904
|
[55] |
Wang Y, Ni Z, Liu Q, Quhe R G, Zheng J, Ye M, Yu D, Shi J, Yang J and Lu J 2015 Adv. Funct. Mater. 25 68
|
[56] |
Gao N, Li J C and Jiang Q 2014 Chem. Phys. Lett. 592 222
|
[57] |
Houssa M, Scalise E, van den Broek B, Lu A, Pourtois G, Afanas'ev V V and Stesmans A 2015 J. Phys. Chem. Solids 574 012015
|
[58] |
Li L and Zhao M 2014 J. Phys. Chem. C 118 19129
|
[59] |
Gao N, Li J C and Jiang Q 2014 Phys. Chem. Phys. 16 11673
|
[60] |
Ding Y and Wang Y 2013 Appl. Phys. Lett. 103 043114
|
[61] |
Zhu J and Schwingenschlogl U 2014 ACS Appl. Mater. Interfaces 6 11675
|
[62] |
Houssa M, Pourtois G, Heyns M M, Afanasév V V and Stesmans A 2011 J. Electrochem. Soc. 158 H107
|
[63] |
Houssa M, van den Broek B, Scalise E, Pourtois G, Afanasév V V and Stesmans A 2013 Phys. Chem. Chem. Phys. 15 3702
|
[64] |
Kokott S, Pflugradt P, Matthes L and Bechstedt F 2014 J. Phys: Condens. Matter 26 185002
|
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|