Please wait a minute...
Chin. Phys. B, 2015, Vol. 24(8): 087308    DOI: 10.1088/1674-1056/24/8/087308
Special Issue: TOPICAL REVIEW — Silicene
TOPICAL REVIEW—Silicene Prev   Next  

Silicene on substrates: A theoretical perspective

Zhong Hong-Xia (钟红霞)a c, Quhe Ru-Ge (屈贺如歌)a d e f, Wang Yang-Yang (王洋洋)a g, Shi Jun-Jie (史俊杰)a, Lü Jin (吕劲)a b
a State Key Laboratory for Mesoscopic Physics and School of Physics, Peking University, Beijing 100871, China;
b Collaborative Innovation Center of Quantum Matter, Beijing 100871, China;
c Department of Physics, Washington University in St. Louis, St. Louis, Missouri 63130, USA;
d Academy for Advanced Interdisciplinary Studies, Peking University, Beijing 100871, China;
e State Key Laboratory of Information Photonics and Optical Communications, Beijing University of Posts and Telecommunications, Beijing 100876, China;
f School of Science, Beijing University of Posts and Telecommunications, Beijing 100876, China;
g Department of Nuclear Science and Engineering and Department of Materials Science and Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
Abstract  

Silicene, as the silicon analog of graphene, is successfully fabricated by epitaxially growing it on various substrates. Like free-standing graphene, free-standing silicene possesses a honeycomb structure and Dirac-cone-shaped energy band, resulting in many fascinating properties such as high carrier mobility, quantum spin Hall effect, quantum anomalous Hall effect, and quantum valley Hall effect. The existence of the honeycomb crystal structure and the Dirac cone of silicene is crucial for observation of its intrinsic properties. In this review, we systematically discuss the substrate effects on the atomic structure and electronic properties of silicene from a theoretical point of view, especially with emphasis on the changes of the Dirac cone.

Keywords:  silicene      dirac cone      substrate effects  
Received:  09 June 2015      Revised:  02 July 2015      Accepted manuscript online: 
PACS:  73.20.-r (Electron states at surfaces and interfaces)  
  73.40.Ns (Metal-nonmetal contacts)  
  68.35.Ct (Interface structure and roughness)  
Fund: 

Project supported by the National Natural Science Foundation of China (Grant Nos. 11274016 and 11474012) and the National Basic Research Program of China (Grant Nos. 2013CB932604 and 2012CB619304).

Corresponding Authors:  Lü Jin     E-mail:  jinglu@pku.edu.cn

Cite this article: 

Zhong Hong-Xia (钟红霞), Quhe Ru-Ge (屈贺如歌), Wang Yang-Yang (王洋洋), Shi Jun-Jie (史俊杰), Lü Jin (吕劲) Silicene on substrates: A theoretical perspective 2015 Chin. Phys. B 24 087308

[1] Cahangirov S, Topsakal M, Aktürk E, Şahin H and Ciraci S 2009 Phys. Rev. Lett. 102 236804
[2] Li X, Mullen J T, Jin Z, Borysenko K M, Buongiorno Nardelli M and Kim K W 2013 Phys. Rev. B 87 115418
[3] Shao Z G, Ye X S, Yang L and Wang C L 2013 J. Appl. Phys. 114 093712
[4] Quhe R, Zheng J, Luo G, Liu Q, Qin R, Zhou J, Yu D, Nagase S, Mei W N, Gao Z and Lu J 2012 NPG Asia Mater. 4 e6
[5] Drummond N D, Zólyomi V and Fal'ko V I 2013 Phys. Rev. B 85 075423
[6] Ni Z, Liu Q, Tang K, Zheng J, Zhou J, Qin R, Gao Z, Yu D and Lu J 2012 Nano Lett. 12 113
[7] Quhe R G, Fei R, Liu Q, Zheng J, Li H, Xu C, Ni Z, Wang Y, Yu D, Gao Z and Lu J 2012 Sci. Rep. 2 853
[8] Ni Z G, Zhong H, Jiang X, Quhe R G, Luo G, Wang Y, Ye M, Yang J, Shi J and Lu J 2014 Nanoscale 6 7609
[9] Zhu Y F, Dai Q Q, Zhao M and Jiang Q 2013 Sci. Rep. 3 1524
[10] Tao L, Cinquanta E, Chiappe D, Grazianetti C, Fanciulli M, Dubey M, Molle A and Akinwande D 2015 Nat. Nanotech. 10 227
[11] Gmitra M, Konschuh S, Ertler C, Ambrosch-Draxl C and Fabian J 2009 Phys. Rev. B 80 235431
[12] Liu C C, Feng W and Yao Y 2011 Phys. Rev. Lett. 107 076802
[13] Ezawa M 2012 Phys. Rev. Lett. 109 055502
[14] Pan H, Li Z, Liu C C, Zhu G, Qiao Z and Yao Y 2014 Phys. Rev. Lett. 112 106802
[15] Tsai W F, Huang C Y, Chang T R, Lin H, Jeng H T and Bansil A 2013 Nat. Commun. 4 1500
[16] Vogt P, De Padova P, Quaresima C, Avila J, Frantzeskakis E, Asensio M C, Resta A, Ealet B and Le Lay G 2012 Phys. Rev. Lett. 108 155501
[17] Feng B, Ding Z, Meng S, Yao Y, He X, Cheng P, Chen L and Wu K 2012 Nano Lett. 12 3507
[18] Fleurence A, Friedlein R, Ozaki T, Kawai H, Wang Y and Yamada-Takamura Y 2012 Phys. Rev. Lett. 108 245501
[19] Meng L, Wang Y, Zhang L, Du S, Wu R, Li L, Zhang Y, Li G, Zhou H, Hofer W A and Gao H J 2013 Nano Lett. 13 685
[20] Aizawa T, Suehara S and Otani S 2014 J. Phys. Chem. C 118 23049
[21] Chiappe D, Scalise E, Cinquanta E, Grazianetti C, van den Broek B, Fanciulli M, Houssa M and Molle A 2014 Adv. Mater. 26 2096
[22] Pflugradt P, Matthes L and Bechstedt F 2014 New J. Phys. 16 075004
[23] Paszkowska A and Krawiec M 2015 Phys. Chem. Chem. Phys. 17 2246
[24] Liu H, Gao J and Zhao J 2013 J. Phys. Chem. C 117 10353
[25] Scalise E, Houssa M, Cinquanta E, Grazianetti C, van den Broek B, Pourtois G, Stesmans A, Fanciulli M and Molle A 2014 2D Mater. 1 011010
[26] Zhu J and Schwingenschlogl U 2015 J. Mater. Chem. C 3 3946
[27] Cai Y, Chuu C P, Wei C M and Chou M Y 2013 Phys. Rev. B 88 245408
[28] Liu F, Liu C C, Wu K, Yang F and Yao Y 2013 Phys. Rev. Lett.111 066804
[29] Chen L, Feng B and Wu K 2013 Appl. Phys. Lett. 102 081602
[30] Kara A, Léandri C, Dávila M E, De Padova P, Ealet B, Oughaddou H, Aufray B and Le Lay G 2009 J. Supercond. Nov. Magn. 22 259
[31] Gao J and Zhao J 2012 Sci. Rep. 2 861
[32] Chiappe D, Grazianetti C, Tallarida G, Fanciulli M and Molle A 2012 Adv. Mater. 24 5088
[33] Lin C H, Arafune R, Kawahara K, Kanno M, Tsukahara N, Minamitani E, Kim Y, Kawai M and Takagi N 2013 Phys. Rev. Lett. 110 076801
[34] Lin C H, Arafune R, Kawahara K, Tsukahara N, Minamitani E, Kim Y, Takagi N and Kawai M 2012 Appl. Phys. Express 5 045802
[35] Jamgotchian H, Colignon Y, Hamzaoui N, Ealet B, Hoarau J Y, Aufray B and Biberian J P 2012 J. Phys: Condens. Matter 24 172001
[36] Lalmi B, Oughaddou H, Enriquez H, Kara A, Vizzini S, Ealet B and Aufray B 2010 Appl. Phys. Lett. 97 223109
[37] Chen L, Liu C C, Feng B, He X, Cheng P, Ding Z, Meng S, Yao Y and Wu K 2012 Phys. Rev. Lett. 109 056804
[38] Chen L, Li H, Feng B, Ding Z, Qiu J, Cheng P, Wu K and Meng S 2013 Phys. Rev. Lett. 110 085504
[39] Cahangirov S, Audiffred M, Tang P, Iacomino A, Duan W, Merino G and Rubio A 2013 Phys. Rev. B 88 035432
[40] Yuan Y, Quhe R G, Zheng J, Wang Y, Ni Z, Shi J and Lu J 2014 Physica E 58 38
[41] Gori P, Pulci O, Ronci F, Colonna S and Bechstedt F 2013 J. Appl. Phys. 114 113710
[42] Guo Z X, Furuya S, Iwata J I and Oshiyama A 2013 J. Phys. Soc. Jpn. 82 063714
[43] Guo Z X, Furuya S, Iwata J I and Oshiyama A 2013 Phys. Rev. B 87 235435
[44] Pflugradt P, Matthes L and Bechstedt F 2014 Phys. Rev. B 89 035403
[45] Wang Y P and Cheng H P 2013 Phys. Rev. B 87 245430
[46] Quhe R G, Yuan Y, Zheng J, Wang Y, Ni Z, Shi J, Yu D, Yang J and Lu J 2014 Sci. Rep. 4 5476
[47] Arafune R, Lin C L, Nagao R, Kawai M and Takagi N 2013 Phys. Rev. Lett. 110 229701
[48] Resta A, Leoni T, Barth C, Ranguis A, Becker C, Bruhn T, Vogt P and Le Lay G 2013 Sci. Rep. 3 2399
[49] Guo Z X and Oshiyama A 2014 Phys. Rev. B 89 155418
[50] Lee C C, Fleurence A, Friedlein R, Yamada-Takamura Y and Ozaki T 2013 Phys. Rev. B 88 165404
[51] Lee C C, Fleurence A, Yamada Takamura Y, Ozaki T and Friedlein R 2014 Phys. Rev. B 90 075422
[52] Wei W, Dai Y, Huang B, Whangbo M H and Jacob T 2015 J. Phys. Chem. Lett. 6 1065
[53] Hu W, Li Z and Yang J 2013 J. Chem. Phys. 139 154704
[54] Neek Amal M, Sadeghi A, Berdiyorov G R and Peeters F M 2013 Appl. Phys. Lett. 103 261904
[55] Wang Y, Ni Z, Liu Q, Quhe R G, Zheng J, Ye M, Yu D, Shi J, Yang J and Lu J 2015 Adv. Funct. Mater. 25 68
[56] Gao N, Li J C and Jiang Q 2014 Chem. Phys. Lett. 592 222
[57] Houssa M, Scalise E, van den Broek B, Lu A, Pourtois G, Afanas'ev V V and Stesmans A 2015 J. Phys. Chem. Solids 574 012015
[58] Li L and Zhao M 2014 J. Phys. Chem. C 118 19129
[59] Gao N, Li J C and Jiang Q 2014 Phys. Chem. Phys. 16 11673
[60] Ding Y and Wang Y 2013 Appl. Phys. Lett. 103 043114
[61] Zhu J and Schwingenschlogl U 2014 ACS Appl. Mater. Interfaces 6 11675
[62] Houssa M, Pourtois G, Heyns M M, Afanasév V V and Stesmans A 2011 J. Electrochem. Soc. 158 H107
[63] Houssa M, van den Broek B, Scalise E, Pourtois G, Afanasév V V and Stesmans A 2013 Phys. Chem. Chem. Phys. 15 3702
[64] Kokott S, Pflugradt P, Matthes L and Bechstedt F 2014 J. Phys: Condens. Matter 26 185002
[1] Spin transport properties for B-doped zigzag silicene nanoribbons with different edge hydrogenations
Jing-Fen Zhao(赵敬芬), Hui Wang(王辉), Zai-Fa Yang(杨在发), Hui Gao(高慧), Hong-Xia Bu(歩红霞), and Xiao-Juan Yuan(袁晓娟). Chin. Phys. B, 2022, 31(1): 017302.
[2] Tunable valley filter efficiency by spin-orbit coupling in silicene nanoconstrictions
Yi-Jian Shi(施一剑), Yuan-Chun Wang(王园春), and Peng-Jun Wang(汪鹏君). Chin. Phys. B, 2021, 30(5): 057201.
[3] Goos-Hänchen-like shift related to spin and valley polarization in ferromagnetic silicene
Mei-Rong Liu(刘美荣), Zheng-Fang Liu(刘正方), Ruo-Long Zhang(张若龙), Xian-Bo Xiao(肖贤波), and Qing-Ping Wu(伍清萍). Chin. Phys. B, 2021, 30(10): 107302.
[4] Two-dimensional hexagonal Zn3Si2 monolayer: Dirac cone material and Dirac half-metallic manipulation
Yurou Guan(官雨柔), Lingling Song(宋玲玲), Hui Zhao(赵慧), Renjun Du(杜仁君), Liming Liu(刘力铭), Cuixia Yan(闫翠霞), Jinming Cai(蔡金明). Chin. Phys. B, 2020, 29(8): 087103.
[5] Synthesis of new silicene structure and its energy band properties
Wei-Qi Huang(黄伟其), Shi-Rong Liu(刘世荣), Hong-Yan Peng(彭鸿雁), Xin Li(李鑫), Zhong-Mei Huang(黄忠梅). Chin. Phys. B, 2020, 29(8): 084202.
[6] A simple rule for finding Dirac cones in bilayered perovskites
Xuejiao Chen(陈雪娇), Lei Liu(刘雷), Dezhen Shen(申德振). Chin. Phys. B, 2019, 28(7): 077106.
[7] Hydrogenated antimonene as quantum spin Hall insulator: A first-principles study
Xin He(贺欣), Ji-Biao Li(李佶彪). Chin. Phys. B, 2019, 28(3): 037301.
[8] Underwater acoustic metamaterial based on double Dirac cone characteristics in rectangular phononic crystals
Dong-Liang Pei(裴东亮), Tao Yang(杨洮), Meng Chen(陈猛), Heng Jiang(姜恒). Chin. Phys. B, 2019, 28(12): 124301.
[9] Generation of valley pump currents in silicene
John Tombe Jada Marcellino, Mei-Juan Wang(王美娟), Sa-Ke Wang(汪萨克). Chin. Phys. B, 2019, 28(1): 017204.
[10] Electric field manipulation of multiple nonequivalent Dirac cones in the electronic structures of hexagonal CrB4 sheet
Jinkun Wang(王锦坤), Yajiao Ke(柯亚娇), Qingxing Xie(谢晴兴), Yanli Li(李艳丽), Jiafu Wang(王嘉赋). Chin. Phys. B, 2018, 27(9): 097304.
[11] Electronic properties of silicene in BN/silicene van der Waals heterostructures
Ze-Bin Wu(吴泽宾), Yu-Yang Zhang(张余洋), Geng Li(李更), Shixuan Du(杜世萱), Hong-Jun Gao(高鸿钧). Chin. Phys. B, 2018, 27(7): 077302.
[12] Electrical controllable spin valves in a zigzag silicene nanoribbon ferromagnetic junction
Lin Zhang(张林). Chin. Phys. B, 2018, 27(6): 067203.
[13] Spin-current pump in silicene
John Tombe Jada Marcellino, Mei-Juan Wang(王美娟), Sa-Ke Wang(汪萨克), Jun Wang(汪军). Chin. Phys. B, 2018, 27(5): 057801.
[14] Distinct edge states and optical conductivities in the zigzag and armchair silicene nanoribbons under exchange and electric fields
Jianfei Zou(邹剑飞), Jing Kang(康静). Chin. Phys. B, 2018, 27(3): 037301.
[15] Comparisons of electrical and optical properties between graphene and silicene-A review
Wirth-Lima A J, Silva M G, Sombra A S B. Chin. Phys. B, 2018, 27(2): 023201.
No Suggested Reading articles found!