Please wait a minute...
Chin. Phys. B, 2019, Vol. 28(12): 124301    DOI: 10.1088/1674-1056/ab55d2
ELECTROMAGNETISM, OPTICS, ACOUSTICS, HEAT TRANSFER, CLASSICAL MECHANICS, AND FLUID DYNAMICS Prev   Next  

Underwater acoustic metamaterial based on double Dirac cone characteristics in rectangular phononic crystals

Dong-Liang Pei(裴东亮)1,2, Tao Yang(杨洮)1,2, Meng Chen(陈猛)1,2, Heng Jiang(姜恒)1,2
1 Key Laboratory of Microgravity, Institute of Mechanics, Chinese Academy of Sciences, Beijing 100190, China;
2 University of Chinese Academy of Sciences, Beijing 100049, China
Abstract  We theoretically construct a rectangular phononic crystal (PC) structure surrounded by water with C2v symmetry, and then place a steel rectangular scatterer at each quarter position inside each cell. The final complex crystal has two forms:the vertical type, in which the distance s between the center of the scatterer and its right-angle point is greater than 0.5a, and the transverse type, in which s is smaller than 0.5a (where a is the crystal constant in the x direction). Each rectangular scatterer has three variables:length L, width D, and rotation angle θ around its centroid. We find that, when L and D change and θ is kept at zero, there is always a linear quadruply degenerate state at the corner of the irreducible Brillouin zone. Then, we vary θ and find that the quadruply degenerate point splits into two doubly-degenerate states with odd and even parities. At the same time, the band structure reverses and undergoes a phase change from topologically non-trivial to topologically trivial. Then we construct an acoustic system consisting of a trivial and a non-trivial PC with equal numbers of layers, and calculate the projected band structure. A helical one-way transmission edge state is found in the frequency range of the body band gap. Then, we use the finite-element software Comsol to simulate the unidirectional transmission of this edge state and the backscattering suppression of right-angle, disorder, and cavity defects. This acoustic wave system with rectangular phononic crystal form broadens the scope of acoustic wave topology and provides a platform for easy acoustic operation.
Keywords:  double Dirac cone      topological edge state      rectangular phononic crystal      topological phase transition  
Received:  11 October 2019      Revised:  04 November 2019      Accepted manuscript online: 
PACS:  43.30.+m (Underwater sound)  
  43.20.+g (General linear acoustics)  
  42.70.Qs (Photonic bandgap materials)  
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 11602269, 11972034, and 11802213), the Strategic Priority Research Program of the Chinese Academy of Sciences (Grant No. XDB22040301), and the Research Program of Beijing, China (Grant Nos. Z161100002616034 and Z171100000817010).
Corresponding Authors:  Meng Chen, Heng Jiang     E-mail:  chenmeng@imech.ac.cn;hengjiang@imech.ac.cn

Cite this article: 

Dong-Liang Pei(裴东亮), Tao Yang(杨洮), Meng Chen(陈猛), Heng Jiang(姜恒) Underwater acoustic metamaterial based on double Dirac cone characteristics in rectangular phononic crystals 2019 Chin. Phys. B 28 124301

[1] Bernevig B A, Hughes T L and Zhang S C 2006 Science 314 1757
[2] Kane C L and Mele E J 2005 Phys. Rev. Lett. 95 226801
[3] Yang W, Chang K and Zhang S C 2008 Phys. Rev. Lett. 100 056602
[4] Bernevig B A and Zhang S C 2006 Phys. Rev. Lett. 96 106802
[5] Maier L, Bocquillon E, Grimm M, Oostinga J B, Ames C, Gould C, Brüne C, Buhmann H and Molenkamp L W 2015 Phys. Scr. T164 014002
[6] Kane C L and Hasan M Z 2010 Rev. Mod. Phys. 82 3045
[7] Qi X L and Zhang S C 2011 Rev. Mod. Phys. 83 1057
[8] Schnyder A, Ryu S, Furusaki A and Ludwig A 2008 Phys. Rev. B 78 195125
[9] Yang Y, Chen S and Li X B 2018 Acta Phys. Sin. 67 237101 (in Chinese)
[10] Fidkowski and Lukasz 2010 Phys. Rev. Lett. 104 130502
[11] Hafezi M, Mittal S, Fan J, Migdall A and Taylor J M 2013 Nat. Photon. 7 1001
[12] Wang Z, Chong Y, Joannopoulos J D and Soljačić M 2009 Nature 461 772
[13] Poo Y, Wu R X, Lin Z, Yang Y and Chan C T 2011 Phys. Rev. Lett. 106 093903
[14] Chen W J, Jiang S J, Chen X D, Zhu B, Zhou L, Dong J W and Chan C T 2014 Nat. Commun. 5 5782
[15] Peano V, Brendel C, Schmidt M and Marquardt F 2015 Phys. Rev. X 5 031011
[16] Lu L, Joannopoulos J D and Soljačić M 2014 Nat. Photon. 8 821
[17] Chan H C and Guo G Y 2018 Phys. Rev. B 97 045422
[18] Ni X, He C, Sun X C, Liu X P, Lu M H, Feng L and Chen Y F 2015 New J. Phys. 17 053016
[19] Yang Z, Gao F, Shi X, Lin X, Gao Z, Chong Y and Zhang B 2015 Phys. Rev. Lett. 114 114301
[20] Lu J, Qiu C, Ye L, Fan X, Ke M, Zhang F and Liu Z 2017 Nat. Phys. 13 369
[21] Vila J, Pal R K and Ruzzene M 2017 Phys. Rev. B 96 134307
[22] Yang Y, Yang Z and Zhang B 2018 J. Appl. Phys. 123 091713
[23] Geng Z G, Peng Y G, Shen Y X, Zhao D G and Zhu X F 2018 Appl. Phys. Lett. 113 033503
[24] Dai H, Xia B and Yu D 2017 J. Appl. Phys. 122 065103
[25] Dai H, Jiao J, Xia B, Liu T, Zheng S and Yu D 2018 J. Phys. D-Appl. Phys. 51 175302
[26] Xia B Z, Liu T T, Huang G L, Dai H Q, Jiao J R, Zang X G and Liu J 2017 Phys. Rev. B 96 094106
[27] Xia B, Fan H and Liu T 2019 Int. J. Mech. Sci. 155 197
[28] Xia B Z, Zheng S J, Liu T T, Jiao J R, Chen N, Dai H Q and Liu J 2018 Phys. Rev. B 97 155124
[29] Zhang X, Wang H X, Lin Z K, Tian Y, Xie B, Lu M H and Jiang J H 2019 Nat. Phys. 15 582
[30] Li Y and Mei J 2015 Opt. Express 23 12089
[31] Li Y, Wu Y and Mei J 2014 Appl. Phys. Lett. 105 014107
[32] Mei J, Wu Y, Chan C T and Zhang Z Q 2012 Phys. Rev. B 86 035141
[33] Wu Y 2014 Opt. Express 22 1906
[34] Lu J, Qiu C, Xu S, Ye Y, Ke M and Liu Z 2014 Phys. Rev. B 89 134302
[1] Characterization of topological phase of superlattices in superconducting circuits
Jianfei Chen(陈健菲), Chaohua Wu(吴超华), Jingtao Fan(樊景涛), and Gang Chen(陈刚). Chin. Phys. B, 2022, 31(8): 088501.
[2] Hard-core Hall tube in superconducting circuits
Xin Guan(关欣), Gang Chen(陈刚), Jing Pan(潘婧), and Zhi-Guo Gui(桂志国). Chin. Phys. B, 2022, 31(8): 080302.
[3] Topological phase transition in cavity optomechanical system with periodical modulation
Zhi-Xu Zhang(张志旭), Lu Qi(祁鲁), Wen-Xue Cui(崔文学), Shou Zhang(张寿), and Hong-Fu Wang(王洪福). Chin. Phys. B, 2022, 31(7): 070301.
[4] Quantum transport signatures of non-trivial topological edge states in a ring-shaped Su-Schrieffer-Heeger double-chain system
Cheng-Zhi Ye(叶成芝), Lan-Yun Zhang(张蓝云), and Hai-Bin Xue(薛海斌). Chin. Phys. B, 2022, 31(2): 027304.
[5] SU(3) spin-orbit coupled fermions in an optical lattice
Xiaofan Zhou(周晓凡), Gang Chen(陈刚), and Suo-Tang Jia(贾锁堂). Chin. Phys. B, 2022, 31(1): 017102.
[6] Efficient and stable wireless power transfer based on the non-Hermitian physics
Chao Zeng(曾超), Zhiwei Guo(郭志伟), Kejia Zhu(祝可嘉), Caifu Fan(范才富), Guo Li(李果), Jun Jiang(江俊), Yunhui Li(李云辉), Haitao Jiang(江海涛), Yaping Yang(羊亚平), Yong Sun(孙勇), and Hong Chen(陈鸿). Chin. Phys. B, 2022, 31(1): 010307.
[7] Floquet bands and photon-induced topological edge states of graphene nanoribbons
Weijie Wang(王威杰), Xiaolong Lü(吕小龙), and Hang Xie(谢航). Chin. Phys. B, 2021, 30(6): 066701.
[8] Erratum to “Floquet bands and photon-induced topological edge states of graphene nanoribbons”
Weijie Wang(王威杰), Xiaolong Lü(吕小龙), and Hang Xie(谢航). Chin. Phys. B, 2021, 30(11): 119901.
[9] Photoinduced Weyl semimetal phase and anomalous Hall effect in a three-dimensional topological insulator
Meng-Nan Chen(陈梦南) and Wen-Chao Chen(陈文潮). Chin. Phys. B, 2021, 30(11): 110308.
[10] Acoustic topological phase transition induced by band inversion of high-order compound modes and robust pseudospin-dependent transport
Yan Li(李妍)†, Yi-Nuo Liu(刘一诺), and Xia Zhang(张霞). Chin. Phys. B, 2020, 29(10): 106301.
[11] Topological phase diagrams and Majorana zero modes of the Kitaev ladder and tube
Yiming Wang(王一鸣), Zhidan Li(李志聃), Qiang Han(韩强). Chin. Phys. B, 2018, 27(4): 047401.
[12] Topological phase transition in a ladder of the dimerized Kitaev superconductor chains
Bo-Zhen Zhou(周博臻), Bin Zhou(周斌). Chin. Phys. B, 2016, 25(10): 107401.
[13] Topological phase transitions driven by next-nearest-neighbor hopping in noncentrosymmetric cold Fermi gases
Wang Rui (王瑞), Zhang Cun-Xi (张存喜), Ji Qing-Shan (计青山). Chin. Phys. B, 2015, 24(3): 030305.
No Suggested Reading articles found!