Please wait a minute...
Chin. Phys. B, 2015, Vol. 24(8): 087309    DOI: 10.1088/1674-1056/24/8/087309
Special Issue: TOPICAL REVIEW — Silicene
TOPICAL REVIEW—Silicene Prev   Next  

Electronic structure of silicene

L. C. Lew Yan Voon (刘祿昌)
School of Science and Mathematics, The Citadel, Charleston, SC, USA
Abstract  

In this topical review, we discuss the electronic structure of free-standing silicene by comparing results obtained using different theoretical methods. Silicene is a single atomic layer of silicon similar to graphene. The interest in silicene is the same as for graphene, in being two-dimensional and possessing a Dirac cone. One advantage of silicene is due to its compatibility with current silicon electronics. Both empirical and first-principles techniques have been used to study the electronic properties of silicene. We will provide a brief overview of the parameter space for first-principles calculations. However, since the theory is standard, no extensive discussion will be included. Instead, we will emphasize what empirical methods can provide to such investigations and the current state of these theories. Finally, we will review the properties computed using both types of theories for free-standing silicene, with emphasis on areas where we have contributed. Comparisons to graphene is provided throughout.

Keywords:  silicene      two-dimensional (2D) materials      electronic structure            p theory  
Received:  11 May 2015      Revised:  29 June 2015      Accepted manuscript online: 
PACS:  73.22.-f (Electronic structure of nanoscale materials and related systems)  
  73.22.Pr (Electronic structure of graphene)  
Fund: 

Project supported by the Citadel Foundation.

Corresponding Authors:  L. C. Lew Yan Voon     E-mail:  llewyanv@citadel.edu

Cite this article: 

L. C. Lew Yan Voon (刘祿昌) Electronic structure of silicene 2015 Chin. Phys. B 24 087309

[1] Guzmán-Verri G G and Lew Yan Voon L C 2007 Phys. Rev. B 76 075131
[2] Novoselov K S, Geim A K, Morozov S V, Jiang D, Zhang Y, Dubonos S V, Grigorieva I V and Firsov A A 2004 Science 306 666
[3] Takeda K and Shiraishi K 1989 Phys. Rev. B 39 11028
[4] Takeda K and Shiraishi K 1994 Phys. Rev. B 50 14916
[5] Wang Y, Scheerschmidt K and Gösele U 2000 Phys. Rev. B 61 12864
[6] Yang X and Ni J 2005 Phys. Rev. B 72 195426
[7] Durgun E, Tongay S and Ciraci S 2005 Phys. Rev. B 72 075420
[8] Nakano H, Ishii M and Nakamura H 2005 Chem. Commun. 23 2945
[9] Nakano H, Mitsuoka T, Harada M, Horibuchi K, Nozaki H, Takahashi N, Nonaka T, Seno Y and Nakamura H 2006 Angew. Chem. 118 6451
[10] Kara A, Léandri C, Dávila M E, de Padova P, Ealet B, Oughaddou H, Aufray B and Lay G L 2009 Journal of Superconductivity and Novel Magnetism 22 259
[11] Chiappe D, Grazianetti C, Tallarida G, Fanciulli M and Molle A 2012 Adv. Mater. 24 5088
[12] Feng B, Ding Z, Meng S, Yao Y, He X, Cheng P, Chen L and Wu K 2012 Nano Lett. 12 3507
[13] Jamgotchian H, Colignon Y, Hamzaoui N, Ealet B, Hoarau J Y, Aufray B and Bibérian J P 2012 J. Phys: Condens. Matter 24 172001
[14] Lin C L, Arafune R, Kawahara K, Tsukahara N, Minamitani E, Kim Y, Takagi N and Kawai M 2012 Appl. Phys. Express 5 045802
[15] Vogt P, De Padova P, Quaresima C, Avila J, Frantzeskakis E, Asensio M C, Resta A, Ealet B and Le Lay G 2012 Phys. Rev. Lett. 108 155501
[16] Tao L, Cinquanta E, Chiappe D, Grazianetti C, Fanciulli M, Dubey M, Molle A and Akinwande D 2015 Nat. Nano 10 227
[17] Martin R M 2004 Electronic Structure (Cambridge: Cambridge University Press)
[18] Lew Yan Voon L C, Sandberg E, Aga R S and Farajian A A 2010 Appl. Phys. Lett. 97 163114
[19] Gonze X, Amadon B, Anglade P M, Beuken J M, Bottin F, Boulanger P, Bruneval F, Caliste D, Caracas R, Ct M, Deutsch T, Genovese L, Ghosez P, Giantomassi M, Goedecker S, Hamann D, Hermet P, Jollet F, Jomard G, Leroux S, Mancini M, Mazevet S, Oliveira M, Onida G, Pouillon Y, Rangel T, Rignanese G M, Sangalli D, Shaltaf R, Torrent M, Verstraete M, Zerah G and Zwanziger J 2009 Comput. Phys. Commun. 180 2582 ISSN 0010-4655 40 YEARS OF CPC: A celebratory issue focused on quality software for high performance, grid and novel computing architectures
[20] Gonze X 2009 Zeitschrift fr Kristallographie 220
[21] Roman R E and Cranford S W 2014 Comput. Mater. Sci. 82 50 ISSN 0927-0256
[22] Guzmán-Verri G G and Lew Yan Voon L C 2011 J. Phys.: Condens. Matter 23 145502
[23] Lew Yan Voon L C and Willatzen M 2009 The k · p Method (Heidelberg: Springer Verlag)
[24] Lew Yan Voon L C, Lopez-Bezanilla A, Wang J, Zhang Y and Willatzen M 2015 New J. Phys. 17 025004
[25] Soto J R, Molina B and Castro J J 2015 Phys. Chem. Chem. Phys. 17 7624
[26] Zhang Y and Tsu R 2010 Nanoscale Res. Lett. 5 805
[27] Cahangirov S, Topsakal M, Aktürk E, S? ahin H and Ciraci S 2009 Phys. Rev. Lett. 102 236804
[28] Bocchetti V, Diep H T, Enriquez H, Oughaddou H and Kara A 2014 J. Phys.: Conf. Ser. 491 012008
[29] Kaltsas D and Tsetseris L 2013 Phys. Chem. Chem. Phys. 15 9710
[30] Arafune R, Lin C L, Nagao R, Kawai M and Takagi N 2013 Phys. Rev. Lett. 110 229701
[31] Gori P, Pulci O, Ronci F, Colonna S and Bechsted F 2013 J. Appl. Phys. 114 113710
[32] Lin C L, Arafune R, Kawahara K, Kanno M, Tsukahara N, Minamitani E, Kim Y, Kawai M and Takagi N 2013 Phys. Rev. Lett. 110 076801
[33] Tsoutsou D, Xenogiannopoulou E, Golias E, Tsipas P and Dimoulas A 2013 Appl. Phys. Lett. 103 231604
[34] Chen M X and Weinert M 2014 Nano Lett. 14 5189
[35] Johnson NW, Vogt P, Resta A, De Padova P, Perez I, Muir D, Kurmaev E Z, Le Lay G and Moewes A 2014 Adv. Funct. Mater. 24 5253 ISSN 1616-3028
[36] Mahatha S K, Moras P, Bellini V, Sheverdyaeva P M, Struzzi C, Petaccia L and Carbone C 2014 Phys. Rev. B 89 201416
[37] Scalise E, Cinquanta E, Houssa M, van den Broek B, Chiappe D, Grazianetti C, Pourtois G, Ealet B, Molle A, Fanciulli M, Afanasev V and Stesmans A 2013 Appl. Surf. Sci. 291 113 ISSN 0169-4332
[38] Ishida H, Hamamoto Y, Morikawa Y, Minamitani E, Arafune R and Takagi N 2015 New J. Phys. 17 015013
[39] Chen L, Liu C C, Feng B, He X, Cheng P, Ding Z, Meng S, Yao Y and Wu K 2012 Phys. Rev. Lett. 109 056804
[40] Feng B, Li H, Liu C C, Shao T N, Cheng P, Yao Y, Meng S, Chen L and Wu K 2013 ACS Nano 7 9049 (Preprint
[41] Liu C C, Feng W and Yao Y 2011 Phys. Rev. Lett. 107 076802
[42] Geissler F, Budich J C and Trauzettel B 2013 New J. Phys. 15 085030
[43] Liu C C, Jiang H and Yao Y 2011 Phys. Rev. B 84 195430
[44] Ezawa M 2013 Phys. Rev. B 87 155415
[45] Winkler R and Zülicke U 2010 Phys. Rev. B 82 245313
[46] Dzade N Y, Obodo K O, Adjokatse S K, Ashu A C, Amankwah E, Atiso C D, Bello A A, Igumbor E, Nzabarinda S B, Obodo J T, Ogbuu A O, Femi O E, Udeigwe J O and Waghmare U V 2010 J. Phys.: Condens. Matter 22 375502
[47] Liu G, Wu M S, Ouyang C Y and Xu B 2012 Europhys. Lett. 99 17010
[48] Qin R, Wang C H, Zhu W and Zhang Y 2012 AIP Advances 2 022159
[49] Zhao H 2012 Phys. Lett. A 376 3546
[50] Kaloni T P, Cheng Y C and Schwingenschlögl U 2013 J. Appl. Phys. 113 104305
[51] Wang Y and Ding Y 2013 Solid State Commun. 155 6
[52] Durajski A, Szcześniak D and Szcześniak R 2014 Solid State Commun. 200 17 ISSN 0038-1098
[53] Mohan B, Kumar A and Ahluwalia P 2014 Physica E: Lowdimensional Systems and Nanostructures 61 40
[54] Qin R, Zhu W, Zhang Y and Deng X 2014 Nano Res. Lett. 9 521
[55] Wang B, Wu J, Gu X, Yin H, Wei Y, Yang R and Dresselhaus M 2014 Appl. Phys. Lett. 104 081902
[56] Yang C h, Yu Z Y, Lu P F, Liu Y M, Manzoor S, Li Mand Zhou S 2014 Proc. SPIE 8975 89750K-89750K-9
[57] Yang C, Yu Z, Lu P, Liu Y, Ye H and Gao T 2014 Comput. Mater. Sci. 95 420 ISSN 0927-0256
[58] Ni Z, Liu Q, Tang K, Zheng J, Zhou J, Qin R, Gao Z, Yu D and Lu J 2012 Nano Lett. 12 113
[59] Drummond N D, Zólyomi V and Fal'ko V I 2012 Phys. Rev. B 85 075423
[60] Vargiamidis V, Vasilopoulos P and Hai G Q 2014 J. Phys.: Condens. Matter 26 345303
[61] Kane C L and Mele E J 2005 Phys. Rev. Lett. 95 226801
[62] Ezawa M 2012 Eur. J. Phys. B 85 1
[63] Kane C L and Mele E J 2005 Phys. Rev. Lett. 95 146802
[64] Tahir M and Schwingenschlogl U 2013 Sci. Rep. 3 1
[65] Tahir M, Manchon A, Sabeeh K and Schwingenschogl U 2013 Appl. Phys. Lett. 102 162412
[66] Ezawa M 2012 New J. Phys. 14 033003
[67] Ezawa M 2013 Phys. Rev. Lett. 110 026603
[68] Ezawa M 2014 JPS Conf. Proc. 1 012003
[1] Predicting novel atomic structure of the lowest-energy FenP13-n(n=0-13) clusters: A new parameter for characterizing chemical stability
Yuanqi Jiang(蒋元祺), Ping Peng(彭平). Chin. Phys. B, 2023, 32(4): 047102.
[2] High-temperature ferromagnetism and strong π-conjugation feature in two-dimensional manganese tetranitride
Ming Yan(闫明), Zhi-Yuan Xie(谢志远), and Miao Gao(高淼). Chin. Phys. B, 2023, 32(3): 037104.
[3] In-plane optical anisotropy of two-dimensional VOCl single crystal with weak interlayer interaction
Ruijie Wang(王瑞洁), Qilong Cui(崔其龙), Wen Zhu(朱文), Yijie Niu(牛艺杰), Zhanfeng Liu(刘站锋), Lei Zhang(张雷), Xiaojun Wu(武晓君), Shuangming Chen(陈双明), and Li Song(宋礼). Chin. Phys. B, 2022, 31(9): 096802.
[4] Bandgap evolution of Mg3N2 under pressure: Experimental and theoretical studies
Gang Wu(吴刚), Lu Wang(王璐), Kuo Bao(包括), Xianli Li(李贤丽), Sheng Wang(王升), and Chunhong Xu(徐春红). Chin. Phys. B, 2022, 31(6): 066205.
[5] First principles investigation on Li or Sn codoped hexagonal tungsten bronzes as the near-infrared shielding material
Bo-Shen Zhou(周博深), Hao-Ran Gao(高浩然), Yu-Chen Liu(刘雨辰), Zi-Mu Li(李子木),Yang-Yang Huang(黄阳阳), Fu-Chun Liu(刘福春), and Xiao-Chun Wang(王晓春). Chin. Phys. B, 2022, 31(5): 057804.
[6] Temperature dependence of bismuth structures under high pressure
Xiaobing Fan(范小兵), Shikai Xiang(向士凯), and Lingcang Cai(蔡灵仓). Chin. Phys. B, 2022, 31(5): 056101.
[7] Measurement of electronic structure in van der Waals ferromagnet Fe5-xGeTe2
Kui Huang(黄逵), Zhenxian Li(李政贤), Deping Guo(郭的坪), Haifeng Yang(杨海峰), Yiwei Li(李一苇),Aiji Liang(梁爱基), Fan Wu(吴凡), Lixuan Xu(徐丽璇), Lexian Yang(杨乐仙), Wei Ji(季威),Yanfeng Guo(郭艳峰), Yulin Chen(陈宇林), and Zhongkai Liu(柳仲楷). Chin. Phys. B, 2022, 31(5): 057404.
[8] Nonlinear optical properties in n-type quadruple δ-doped GaAs quantum wells
Humberto Noverola-Gamas, Luis Manuel Gaggero-Sager, and Outmane Oubram. Chin. Phys. B, 2022, 31(4): 044203.
[9] High-throughput computational material screening of the cycloalkane-based two-dimensional Dion—Jacobson halide perovskites for optoelectronics
Guoqi Zhao(赵国琪), Jiahao Xie(颉家豪), Kun Zhou(周琨), Bangyu Xing(邢邦昱), Xinjiang Wang(王新江), Fuyu Tian(田伏钰), Xin He(贺欣), and Lijun Zhang(张立军). Chin. Phys. B, 2022, 31(3): 037104.
[10] Electronic structure and spin–orbit coupling in ternary transition metal chalcogenides Cu2TlX2 (X = Se, Te)
Na Qin(秦娜), Xian Du(杜宪), Yangyang Lv(吕洋洋), Lu Kang(康璐), Zhongxu Yin(尹中旭), Jingsong Zhou(周景松), Xu Gu(顾旭), Qinqin Zhang(张琴琴), Runzhe Xu(许润哲), Wenxuan Zhao(赵文轩), Yidian Li(李义典), Shuhua Yao(姚淑华), Yanfeng Chen(陈延峰), Zhongkai Liu(柳仲楷), Lexian Yang(杨乐仙), and Yulin Chen(陈宇林). Chin. Phys. B, 2022, 31(3): 037101.
[11] Transition metal anchored on C9N4 as a single-atom catalyst for CO2 hydrogenation: A first-principles study
Jia-Liang Chen(陈嘉亮), Hui-Jia Hu(胡慧佳), and Shi-Hao Wei(韦世豪). Chin. Phys. B, 2022, 31(10): 107306.
[12] Spin and spin-orbit coupling effects in nickel-based superalloys: A first-principles study on Ni3Al doped with Ta/W/Re
Liping Liu(刘立平), Jin Cao(曹晋), Wei Guo(郭伟), and Chongyu Wang(王崇愚). Chin. Phys. B, 2022, 31(1): 016105.
[13] First-principles study of structural and opto-electronic characteristics of ultra-thin amorphous carbon films
Xiao-Yan Liu(刘晓艳), Lei Wang(王磊), and Yi Tong(童祎). Chin. Phys. B, 2022, 31(1): 016102.
[14] Spin transport properties for B-doped zigzag silicene nanoribbons with different edge hydrogenations
Jing-Fen Zhao(赵敬芬), Hui Wang(王辉), Zai-Fa Yang(杨在发), Hui Gao(高慧), Hong-Xia Bu(歩红霞), and Xiao-Juan Yuan(袁晓娟). Chin. Phys. B, 2022, 31(1): 017302.
[15] Magnetic and electronic properties of two-dimensional metal-organic frameworks TM3(C2NH)12
Zhen Feng(冯振), Yi Li(李依), Yaqiang Ma(马亚强), Yipeng An(安义鹏), and Xianqi Dai(戴宪起). Chin. Phys. B, 2021, 30(9): 097102.
No Suggested Reading articles found!