CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES |
Prev
Next
|
|
|
Two-dimensional hexagonal Zn3Si2 monolayer: Dirac cone material and Dirac half-metallic manipulation |
Yurou Guan(官雨柔), Lingling Song(宋玲玲), Hui Zhao(赵慧), Renjun Du(杜仁君), Liming Liu(刘力铭), Cuixia Yan(闫翠霞), Jinming Cai(蔡金明) |
Faculty of Materials Science and Engineering, Kunming University of Science and Technology, Kunming 650093, China |
|
|
Abstract The fascinating Dirac cone in honeycomb graphene, which underlies many unique electronic properties, has inspired the vast endeavors on pursuing new two-dimensional (2D) Dirac materials. Based on the density functional theory method, a 2D material Zn3Si2 of honeycomb transition-metal silicide with intrinsic Dirac cones has been predicted. The Zn3Si2 monolayer is dynamically and thermodynamically stable under ambient conditions. Importantly, the Zn3Si2 monolayer is a room-temperature 2D Dirac material with a spin-orbit coupling energy gap of 1.2 meV, which has an intrinsic Dirac cone arising from the special hexagonal lattice structure. Hole doping leads to the spin polarization of the electron, which results in a Dirac half-metal feature with single-spin Dirac fermion. This novel stable 2D transition-metal-silicon-framework material holds promises for electronic device applications in spintronics.
|
Received: 13 March 2020
Revised: 18 May 2020
Accepted manuscript online:
|
PACS:
|
71.15.Mb
|
(Density functional theory, local density approximation, gradient and other corrections)
|
|
73.20.At
|
(Surface states, band structure, electron density of states)
|
|
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 11674136 and 11564022), Yunnan Province for Recruiting High-Caliber Technological Talents, China (Grant No. 1097816002), Reserve Talents for Yunnan Young and Middle-aged Academic and Technical Leaders, China (Grant No. 2017HB010), the Academic Qinglan Project of KUST (Grant No. 1407840010), the Analysis and Testing Fund of KUST (Grant No. 2017M20162230010), and the High-level Talents of KUST (Grant No. 1411909425). |
Corresponding Authors:
Cuixia Yan, Cuixia Yan
E-mail: cuixiayan09@gmail.com;j.cai@kmsut.edu.cn
|
Cite this article:
Yurou Guan(官雨柔), Lingling Song(宋玲玲), Hui Zhao(赵慧), Renjun Du(杜仁君), Liming Liu(刘力铭), Cuixia Yan(闫翠霞), Jinming Cai(蔡金明) Two-dimensional hexagonal Zn3Si2 monolayer: Dirac cone material and Dirac half-metallic manipulation 2020 Chin. Phys. B 29 087103
|
[1] |
Wehling T, Black-Schaffer A M and Balatsky A V 2014 Adv. Phys. 63 1
|
[2] |
Castro Neto A H, Peres N M R, Novoselov K S and Geim A K 2009 Rev. Mod. Phys. 81 109
|
[3] |
Liu C C, Feng W X and Yao Y G 2011 Phys. Rev. Lett. 107 076802
|
[4] |
Cahangirov S, Topsakal M, Aktürk E, Şahin H, and Ciraci S 2009 Phys. Rev. Lett. 102 236804
|
[5] |
Zhu F F, Chen W J, Xu Y, Gao C L, Guan D D, Liu C H, Qian D, Zhang S C and Jia J F 2015 Nat. Mater. 14 1020
|
[6] |
Novoselov K 2007 Nat. Mater. 6 720
|
[7] |
Novoselov K S, Geim A K, Morozov S, Jiang D, Katsnelson M I, Grigorieva I, Dubonos S and Firsov A A 2005 Nature 438 197
|
[8] |
Zhang Y, Tan Y W, Stormer H L and Kim P 2005 Nature 438 201
|
[9] |
Bolotin K I, Ghahari F, Shulman M D, Stormer H L and Kim P 2009 Nature 462 196
|
[10] |
Du X, Skachko I, Duerr F, Luican A and Andrei E Y 2009 Nature 462 192
|
[11] |
Dean C R, Wang L, Maher P, Forsythe C, Ghahari F, Gao Y, Katoch J, Ishigami M, Moon P and Koshino M 2013 Nature 497 598
|
[12] |
Ponomarenko L, Gorbachev R, Yu G, Elias D, Jalil R, Patel A, Mishchenko A, Mayorov A, Woods C and Wallbank J 2013 Nature 497 594
|
[13] |
Hunt B, Sanchez-Yamagishi J, Young A, Yankowitz M, LeRoy B J, Watanabe K, Taniguchi T, Moon P, Koshino M and Jarillo Herrero P 2013 Science 340 1427
|
[14] |
Bolotin K I, Sikes K J, Jiang Z, Klima M, Fudenberg G, Hone J, Kim P and Stormer H 2008 Solid State Commun. 146 351
|
[15] |
Hellerstedt J, Yudhistira I, Edmonds M T, Chang L and Fuhrer M S 2017 Phys. Rev. Mater. 1 054203
|
[16] |
Dil J H, Al E, Osterwalder J, Patthey L and Meier F 2009 Phys. Rev. Lett. 103 146401
|
[17] |
Sato T, Segawa K, Guo H, Sugawara K and Ando Y 2010 Phys. Rev. Lett. 105 136802
|
[18] |
Li X, Zhang F, Niu Q and Feng J 2014 Sci. Rep. 4 6397
|
[19] |
Chen Xue Jiao L L, Shen Dezhen 2019 Chin. Phys. B 28 77106
|
[20] |
Liu P F, Zhou L J, Tretiak S and Wu L M 2017 J. Mater. Chem. C 5 9181
|
[21] |
Wang Z F, Liu Z and Liu F 2013 Nat. Commun. 4 1471
|
[22] |
Ma Y, Dai Y, Li X, Sun Q and Huang B 2014 Carbon 73 382
|
[23] |
Ma Y, Dai Y, Wei W, Huang B B and Whangbo M H 2014 Sci. Rep. 4 7297
|
[24] |
Ishizuka H and Motome Y 2012 Phys. Rev. Lett. 109 237207
|
[25] |
Cai T Y, Li X, Wang F, Ju S, Feng J and Gong C D 2015 Nano Lett. 15 6434
|
[26] |
Wei L, Zhang X M and Zhao M W 2016 Phys. Chem. Chem. Phys. 18 8059
|
[27] |
Ji W X, Zhang B M, Zhang S F, Zhang C W, Ding M, Li P and Wang P J 2017 J. Mater. Chem. C 5 8504
|
[28] |
Wu M H, Wang Z J, Liu J W, Li W B, Fu H H, Sun L, Liu X, Pan M H, Weng H M and Dincǎ M 2017 2D Mater. 4 015015
|
[29] |
Zhang S J, Zhang C W, Zhang S F, Ji W X, Li P, Wang P J, Li S S and Yan S S 2017 Phys. Rev. B 96 205433
|
[30] |
He J, Ma S, Lyu P and Nachtigall P 2016 J. Mater. Chem. C 4 2518
|
[31] |
Liu Z F, Liu J Y and Zhao J J 2017 Nano Res. 10 1972
|
[32] |
Ji W X, Zhang B M, Zhang S F, Zhang C W, Ding M, Wang P J and Zhang R Q 2018 Nanoscale 10 13645
|
[33] |
Sun Q L and Kioussis N 2018 Phys. Rev. B 97 094408
|
[34] |
Kresse G and Hafner J 1993 Phys. Rev. B 47 558
|
[35] |
Kresse G and Joubert D 1999 Phys. Rev. B 59 1758
|
[36] |
Perdew J P, Burke K and Ernzerhof M 1998 Phys. Rev. Lett. 80 891
|
[37] |
Parlinski K, Li Z and Kawazoe Y 1997 Phys. Rev. Lett. 78 4063
|
[38] |
Nosé S 1984 J. Chem. Phys. 81 511
|
[39] |
Song L L, Zhang L Z, Guan Y R, Lu J C, Yan C X and Cai J M 2019 Chin. Phys. B 28 037101
|
[40] |
Liu P F, Zhou L, Frauenheim T and Wu L M 2016 Phys. Chem. Chem. Phys. 18 30379
|
[41] |
Zhang S L, Xie M Q, Li F Y, Yan Z, Li Y F, Kan E J, Liu W, Chen Z F and Zeng H B 2016 Angew. Chem. 55 1666
|
[42] |
Pumera M and Sofer Z 2017 Adv. Mater. 29 1605299
|
[43] |
Liu Z R, Chen J H, Wang S B, Yuan D W, Yin M J and Wu C L 2011 Acta Mater. 59 7396
|
[44] |
Wolverton C and Ozoliņš V 2006 Phys. Rev. B 73 144104
|
[45] |
Savin A, Nesper R, Wengert S and Fässler T F 1997 Angew. Chem. 36 1808
|
[46] |
Wang C, Zhou X, Pan Y, Qiao J, Kong X, Kaun C C and Ji W 2018 Phys. Rev. B 97 245409
|
[47] |
Javey A, Guo J, Farmer D B, Wang Q, Wang D, Gordon R G, Lundstrom M and Dai H 2004 Nano Lett. 4 447
|
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|