Please wait a minute...
Chin. Phys. B, 2015, Vol. 24(7): 076102    DOI: 10.1088/1674-1056/24/7/076102
CONDENSED MATTER: STRUCTURAL, MECHANICAL, AND THERMAL PROPERTIES Prev   Next  

Visible to deep ultraviolet range optical absorption of electron irradiated borosilicate glass

Wang Tie-Shan (王铁山), Duan Bing-Huang (段丙皇), Tian Feng (田丰), Peng Hai-Bo (彭海波), Chen Liang (陈亮), Zhang Li-Min (张利民), Yuan Wei (袁伟)
School of Nuclear Science and Technology, Lanzhou University, Lanzhou 730000, China
Abstract  To study the room-temperature stable defects induced by electron irradiation, commercial borosilicate glasses were irradiated by 1.2 MeV electrons and then ultraviolet (UV) optical absorption (OA) spectra were measured. Two characteristic bands were revealed before irradiation, and they were attributed to silicon dangling bond (E'-center) and Fe3+ species, respectively. The existence of Fe3+ was confirmed by electron paramagnetic resonance (EPR) measurements. After irradiation, the absorption spectra revealed irradiation-induced changes, while the content of E'-center did not change in the deep ultraviolet (DUV) region. The slightly reduced OA spectra at 4.9 eV was supposed to transform Fe3+ species to Fe2+ species and this transformation leads to the appearance of 4.3 eV OA band. By calculating intensity variation, the transformation of Fe was estimated to be about 5% and the optical absorption cross section of Fe2+ species is calculated to be 2.2 times larger than that of Fe3+ species. Peroxy linkage (POL, ≡Si–O–O–Si≡), which results in a 3.7 eV OA band, is speculated not to be from Si–O bond break but from Si–O–B bond, Si–O–Al bond, or Si–O–Na bond break. The co-presence defect with POL is probably responsible for 2.9-eV OA band.
Keywords:  borosilicate glass      electron irradiation      defect      optical absorption  
Received:  08 October 2014      Revised:  26 January 2015      Accepted manuscript online: 
PACS:  61.43.Fs (Glasses)  
  61.80.Fe (Electron and positron radiation effects)  
Fund: Project supported by the Fundamental Research Funds for the Central Universities of China (Grant No. lzujbky-2014-16).
Corresponding Authors:  Wang Tie-Shan     E-mail:  tswang@lzu.edu.cn

Cite this article: 

Wang Tie-Shan (王铁山), Duan Bing-Huang (段丙皇), Tian Feng (田丰), Peng Hai-Bo (彭海波), Chen Liang (陈亮), Zhang Li-Min (张利民), Yuan Wei (袁伟) Visible to deep ultraviolet range optical absorption of electron irradiated borosilicate glass 2015 Chin. Phys. B 24 076102

[1] Imran M, Hussain F, Rashid M, Cai Y and Ahmad S A 2013 Chin. Phys. B 22 096101
[2] Hosono H, Kajihara K, Suzuki T, Ikuta Y, Skuja L and Hirano M 2002 Solid State Commun. 122 117
[3] Cannas M, Lavinia V and Roberto B 2008 Nucl. Instrum. Meth. Phys. Res. Sec. B 266 2945
[4] Skuja L, Kajihara K, Hirano M and Hosono H 2011 Phys. Rev. B 84 205206
[5] Skuja L 1998 J. Non-Cryst. Solid. 239 16
[6] Pacchioni G, Skuja L and Griscom D L 2000 Defects in SiO2 and Related Dielectrics: Science and Technology (Dordrecht: Kluwer Academic Publishers) pp. 73-116
[7] Sakurai Y and Nagasawa K 2000 J. Non-Cryst. Solid. 261 21
[8] Sakurai Y 2000 J. Non-Cryst. Solid. 276 159
[9] Sapak D L, Ward J M and Marion J E 1988 SPIE 970 107
[10] Ehrt D 1996 J. Non-Cryst. 196 304
[11] Cook L and Mader K H 1982 J. Am. Ceram. Soc. 65 108
[12] Duffy J A 1997 Phys. Chem. Glasses 38 289
[13] Ehrt D, Ebeling P and Natura U 2000 J. Non-Cryst. Solid. 263 240
[14] Olivier F Y, Boizot B, Ghaleb D and Petite G 2005 J. Non-Cryst. Solid. 351 1061
[15] Peteanu M, Cociu L and Ardelean I 1994 J. Mater. Sci. Technol. 10 97
[16] Jr. Siegel G H 1974 J. Non-Cryst. Solid. 13 372
[17] Weeks R A 1956 J. Appl. Phys. 27 1376
[18] Hosono H, Ikuta Y, Kinoshita T, Kajihara K and Hirano M 2001 Phys. Rev. Lett. 87 175501
[19] Bartoll J, Nofz M and Stößer R 2000 Phys. Chem. Glasses 41 140
[20] Ohuchi F and Holloway P H 1982 J. Vac. Sci. Technol. 20 863
[21] Miotello A, Cinque G, Mazzoldi P and Pantano P 1991 Phys. Rev. B 43 3831
[22] Chen L, Wang T S, Zhang G F, Yang K J, Peng H B and Zhang L M 2013 Chin. Phys. B 22 126101
[23] Zhao S L and Bertrand P 2011 Chin. Phys. B 20 037901
[24] Cazaux J 1986 J. Appl. Phys. 59 1418
[25] Friebele E J, Griscom D L, Stapelbroek M and Weeks R A 1979 Phys. Rev. Lett. 42 1346
[1] Advancing thermoelectrics by suppressing deep-level defects in Pb-doped AgCrSe2 alloys
Yadong Wang(王亚东), Fujie Zhang(张富界), Xuri Rao(饶旭日), Haoran Feng(冯皓然),Liwei Lin(林黎蔚), Ding Ren(任丁), Bo Liu(刘波), and Ran Ang(昂然). Chin. Phys. B, 2023, 32(4): 047202.
[2] Molecular dynamics study of interactions between edge dislocation and irradiation-induced defects in Fe–10Ni–20Cr alloy
Tao-Wen Xiong(熊涛文), Xiao-Ping Chen(陈小平), Ye-Ping Lin(林也平), Xin-Fu He(贺新福), Wen Yang(杨文), Wang-Yu Hu(胡望宇), Fei Gao(高飞), and Hui-Qiu Deng(邓辉球). Chin. Phys. B, 2023, 32(2): 020206.
[3] Dramatic reduction in dark current of β-Ga2O3 ultraviolet photodectors via β-(Al0.25Ga0.75)2O3 surface passivation
Jian-Ying Yue(岳建英), Xue-Qiang Ji(季学强), Shan Li(李山), Xiao-Hui Qi(岐晓辉), Pei-Gang Li(李培刚), Zhen-Ping Wu(吴真平), and Wei-Hua Tang(唐为华). Chin. Phys. B, 2023, 32(1): 016701.
[4] Theoretical study of M6X2 and M6XX' structure (M = Au, Ag; X,X' = S, Se): Electronic and optical properties, ability of photocatalytic water splitting, and tunable properties under biaxial strain
Jiaqi Li(李嘉琪), Xinlu Cheng(程新路), and Hong Zhang(张红). Chin. Phys. B, 2022, 31(9): 097101.
[5] Effects of oxygen concentration and irradiation defects on the oxidation corrosion of body-centered-cubic iron surfaces: A first-principles study
Zhiqiang Ye(叶志强), Yawei Lei(雷亚威), Jingdan Zhang(张静丹), Yange Zhang(张艳革), Xiangyan Li(李祥艳), Yichun Xu(许依春), Xuebang Wu(吴学邦), C. S. Liu(刘长松), Ting Hao(郝汀), and Zhiguang Wang(王志光). Chin. Phys. B, 2022, 31(8): 086802.
[6] Recent advances of defect-induced spin and valley polarized states in graphene
Yu Zhang(张钰), Liangguang Jia(贾亮广), Yaoyao Chen(陈瑶瑶), Lin He(何林), and Yeliang Wang(王业亮). Chin. Phys. B, 2022, 31(8): 087301.
[7] Enhancing performance of GaN-based LDs by using GaN/InGaN asymmetric lower waveguide layers
Wen-Jie Wang(王文杰), Ming-Le Liao(廖明乐), Jun Yuan(袁浚), Si-Yuan Luo(罗思源), and Feng Huang(黄锋). Chin. Phys. B, 2022, 31(7): 074206.
[8] Direct visualization of structural defects in 2D semiconductors
Yutuo Guo(郭玉拓), Qinqin Wang(王琴琴), Xiaomei Li(李晓梅), Zheng Wei(魏争), Lu Li(李璐), Yalin Peng(彭雅琳), Wei Yang(杨威), Rong Yang(杨蓉), Dongxia Shi(时东霞), Xuedong Bai(白雪冬), Luojun Du(杜罗军), and Guangyu Zhang(张广宇). Chin. Phys. B, 2022, 31(7): 076105.
[9] Interfacial defect engineering and photocatalysis properties of hBN/MX2 (M = Mo, W, and X = S, Se heterostructures
Zhi-Hai Sun(孙志海), Jia-Xi Liu(刘佳溪), Ying Zhang(张颖), Zi-Yuan Li(李子源), Le-Yu Peng(彭乐宇), Peng-Ru Huang(黄鹏儒), Yong-Jin Zou(邹勇进), Fen Xu(徐芬), and Li-Xian Sun(孙立贤). Chin. Phys. B, 2022, 31(6): 067101.
[10] Effects of electrical stress on the characteristics and defect behaviors in GaN-based near-ultraviolet light emitting diodes
Ying-Zhe Wang(王颖哲), Mao-Sen Wang(王茂森), Ning Hua(化宁), Kai Chen(陈凯), Zhi-Min He(何志敏), Xue-Feng Zheng(郑雪峰), Pei-Xian Li(李培咸), Xiao-Hua Ma(马晓华), Li-Xin Guo(郭立新), and Yue Hao(郝跃). Chin. Phys. B, 2022, 31(6): 068101.
[11] Surface defects, stress evolution, and laser damage enhancement mechanism of fused silica under oxygen-enriched condition
Wei-Yuan Luo(罗韦媛), Wen-Feng Sun(孙文丰), Bo Li(黎波), Xia Xiang(向霞), Xiao-Long Jiang(蒋晓龙),Wei Liao(廖威), Hai-Jun Wang(王海军), Xiao-Dong Yuan(袁晓东),Xiao-Dong Jiang(蒋晓东), and Xiao-Tao Zu(祖小涛). Chin. Phys. B, 2022, 31(5): 054214.
[12] Transition state and formation process of Stone—Wales defects in graphene
Jian-Hui Bai(白建会), Yin Yao(姚茵), and Ying-Zhao Jiang(姜英昭). Chin. Phys. B, 2022, 31(3): 036102.
[13] Effect of the number of defect particles on the structure and dispersion relation of a two-dimensional dust lattice system
Rangyue Zhang(张壤月), Guannan Shi(史冠男), Hanyu Tang(唐瀚宇), Yang Liu(刘阳), Yanhong Liu(刘艳红), and Feng Huang(黄峰). Chin. Phys. B, 2022, 31(3): 035204.
[14] Effect of heavy ion irradiation on the interface traps of AlGaN/GaN high electron mobility transistors
Zheng-Zhao Lin(林正兆), Ling Lü(吕玲), Xue-Feng Zheng(郑雪峰), Yan-Rong Cao(曹艳荣), Pei-Pei Hu(胡培培), Xin Fang(房鑫), and Xiao-Hua Ma(马晓华). Chin. Phys. B, 2022, 31(3): 036103.
[15] First-principles study of stability of point defects and their effects on electronic properties of GaAs/AlGaAs superlattice
Shan Feng(冯山), Ming Jiang(姜明), Qi-Hang Qiu(邱启航), Xiang-Hua Peng(彭祥花), Hai-Yan Xiao(肖海燕), Zi-Jiang Liu(刘子江), Xiao-Tao Zu(祖小涛), and Liang Qiao(乔梁). Chin. Phys. B, 2022, 31(3): 036104.
No Suggested Reading articles found!