Please wait a minute...
Chin. Phys. B, 2015, Vol. 24(7): 076101    DOI: 10.1088/1674-1056/24/7/076101
CONDENSED MATTER: STRUCTURAL, MECHANICAL, AND THERMAL PROPERTIES Prev   Next  

Helix unwinding in ferroelectric liquid crystals induced by tilted electric field

Nail G. Migranova, Aleksey A. Kudreykob
a Bashkir State Pedagogical University, Department of General and Theoretical Physics, Okt. Revolutsii st. 3A, 450000 Ufa, Russia;
b Ufa State Petroleum Technological University, Department of Physics, Kosmonavtov st. 1, 450062 Ufa, Russia
Abstract  

Helix unwinding in ferroelectric liquid crystals induced by an electric field is theoretically studied on the basis of the continuum theory. By applying a weak electric field tilted to the smectic layers, the contribution of the dielectric interaction energy density to the total free energy density is increased. Approximation methods are used to calculate the free energy for different tilt angles between the electric field and the smectic layers. The obtained results suggest selecting the optimal number of pitches in the film that matches to the minimum of the free energy.

Keywords:  ferroelectric liquid crystals      helicoidal structure      thin films      Euler'      s equation  
Received:  21 January 2015      Revised:  01 April 2015      Accepted manuscript online: 
PACS:  61.20.Gy (Theory and models of liquid structure)  
  61.20.Ja (Computer simulation of liquid structure)  
  61.30.Dk (Continuum models and theories of liquid crystal structure)  
  61.30.Gd (Orientational order of liquid crystals; electric and magnetic field effects on order)  
Fund: 

Project supported by the Russian Foundation for Basic Research (RFBR) (Grant No. 14-02-97026).

Corresponding Authors:  Aleksey A. Kudreyko     E-mail:  akudreyko@rusoil.net

Cite this article: 

Nail G. Migranov, Aleksey A. Kudreyko Helix unwinding in ferroelectric liquid crystals induced by tilted electric field 2015 Chin. Phys. B 24 076101

[1] Lagerwall J P F 2002 Structures and Properties of the Chiral Smectic C Liquid Crystal Phases (Ph.D. Dissertation) (Gothenburg: Göteborg University) p. 114
[2] Smith A and Stewart I W 2006 J. Phys. A: Math. Gen. 39 11361
[3] Stewart IW2004 The Static and Dynamic Continuum Theory of Liquid Crystals: A Mathematical Introduction (London: Taylor & Francis) p. 360
[4] Martinot-Lagarde Ph and Durand G 1980 J. Physique Lett. 41 L43
[5] Guo Q, Srivastava A K, Pozhidaev E P, Chigrinov V G and Kwok H 2014 Appl. Phys. Express 7 021701
[6] Dolganov P V and Zhilin V M 2013 Phys. Rev. E 87 062505
[7] Dolganov P V and Zhilin V M 2010 Phys. Rev. E 81 051704
[8] Baytch N, Selinger R L B, Selinger J V and Shashidhar R 2003 Phys. Rev. E 68 041702
[9] Uto S 2005 J. Appl. Phys. 97 014107
[10] Khoo I C 2007 Liquid Crystals (2nd Edn.) (Hoboken: John Wiley & Sons, Inc.) p. 368
[11] Akahane T and Nakagawa M 1986 Jpn. J. Appl. Phys. 25 L661
[12] Blinov L 2011 Structure and Properties of Liquid Crystals (New York: Springer) p. 439
[13] Gradsteyn I S and Ryzhyk I M 2007 Table of Integrals, Series, and Products (London: Springer) p. 1171
[14] MacGregor A R 1989 J. Opt. Soc. Am. A 6 1493
[15] Chandrasekhar S 1992 Liquid Crystals (2nd Edn.) (Cambridge: Cambridge University Press) p. 460
[1] The coupled deep neural networks for coupling of the Stokes and Darcy-Forchheimer problems
Jing Yue(岳靖), Jian Li(李剑), Wen Zhang(张文), and Zhangxin Chen(陈掌星). Chin. Phys. B, 2023, 32(1): 010201.
[2] Migration of weakly bonded oxygen atoms in a-IGZO thin films and the positive shift of threshold voltage in TFTs
Chen Wang(王琛), Wenmo Lu(路文墨), Fengnan Li(李奉南), Qiaomei Luo(罗巧梅), and Fei Ma(马飞). Chin. Phys. B, 2022, 31(9): 096101.
[3] Anomalous strain effect in heteroepitaxial SrRuO3 films on (111) SrTiO3 substrates
Zhenzhen Wang(王珍珍), Weiheng Qi(戚炜恒), Jiachang Bi(毕佳畅), Xinyan Li(李欣岩), Yu Chen(陈雨), Fang Yang(杨芳), Yanwei Cao(曹彦伟), Lin Gu(谷林), Qinghua Zhang(张庆华), Huanhua Wang(王焕华), Jiandi Zhang(张坚地), Jiandong Guo(郭建东), and Xiaoran Liu(刘笑然). Chin. Phys. B, 2022, 31(12): 126801.
[4] Effect of Mo doping on phase change performance of Sb2Te3
Wan-Liang Liu(刘万良), Ying Chen(陈莹), Tao Li(李涛), Zhi-Tang Song(宋志棠), and Liang-Cai Wu(吴良才). Chin. Phys. B, 2021, 30(8): 086801.
[5] Gas sensor using gold doped copper oxide nanostructured thin films as modified cladding fiber
Hussein T. Salloom, Rushdi I. Jasim, Nadir Fadhil Habubi, Sami Salman Chiad, M Jadan, and Jihad S. Addasi. Chin. Phys. B, 2021, 30(6): 068505.
[6] Exact explicit solitary wave and periodic wave solutions and their dynamical behaviors for the Schamel-Korteweg-de Vries equation
Bin He(何斌) and Qing Meng(蒙清). Chin. Phys. B, 2021, 30(6): 060201.
[7] Molecular beam epitaxy growth of iodide thin films
Xinqiang Cai(蔡新强), Zhilin Xu(徐智临), Shuai-Hua Ji(季帅华), Na Li(李娜), and Xi Chen(陈曦). Chin. Phys. B, 2021, 30(2): 028102.
[8] Synthesis and thermoelectric properties of Bi-doped SnSe thin films
Jun Pang(庞军), Xi Zhang(张析), Limeng Shen(申笠蒙), Jiayin Xu(徐家胤), Ya Nie(聂娅), and Gang Xiang(向钢). Chin. Phys. B, 2021, 30(11): 116302.
[9] Scalable fabrication of Bi2O2Se polycrystalline thin film for near-infrared optoelectronic devices applications
Bin Liu(刘斌) and Hong Zhou(周洪). Chin. Phys. B, 2021, 30(10): 106803.
[10] Structural and optical characteristic features of RF sputtered CdS/ZnO thin films
Ateyyah M Al-Baradi, Fatimah A Altowairqi, A A Atta, Ali Badawi, Saud A Algarni, Abdulraheem S A Almalki, A M Hassanien, A Alodhayb, A M Kamal, M M El-Nahass. Chin. Phys. B, 2020, 29(8): 080702.
[11] Thermal stability of magnetron sputtering Ge-Ga-S films
Lei Niu(牛磊), Yimin Chen(陈益敏), Xiang Shen(沈祥), Tiefeng Xu(徐铁峰). Chin. Phys. B, 2020, 29(8): 087803.
[12] Lump and interaction solutions to the (3+1)-dimensional Burgers equation
Jian Liu(刘健), Jian-Wen Wu(吴剑文). Chin. Phys. B, 2020, 29(3): 030201.
[13] Alternative constitutive relation for momentum transport of extended Navier-Stokes equations
Guo-Feng Han(韩国锋), Xiao-Li Liu(刘晓丽), Jin Huang(黄进), Kumar Nawnit, and Liang Sun(孙亮). Chin. Phys. B, 2020, 29(12): 124701.
[14] Optical and electrical properties of InGaZnON thin films
Jian Ke Yao(姚建可), Fan Ye(叶凡), Ping Fan(范平). Chin. Phys. B, 2020, 29(1): 018105.
[15] Influence of low-temperature sulfidation on the structure of ZnS thin films
Shuzhen Chen(陈书真), Ligang Song(宋力刚), Peng Zhang(张鹏), Xingzhong Cao(曹兴忠), Runsheng Yu(于润升), Baoyi Wang(王宝义), Long Wei(魏龙), Rengang Zhang(张仁刚). Chin. Phys. B, 2019, 28(2): 024214.
No Suggested Reading articles found!