|
|
Direct measurement of the concurrence for two-qubit electron spin entangled pure state based on charge detection |
Liu Jiong (刘炯)a b, Zhou Lan (周澜)a c, Sheng Yu-Bo (盛宇波)a b |
a Key Laboratory of Broadband Wireless Communication and Sensor Network Technology, Nanjing University of Posts and Telecommunications, Nanjing 210003, China;
b Institute of Signal Processing Transmission, Nanjing University of Posts and Telecommunications, Nanjing 210003, China;
c College of Mathematics and Physics, Nanjing University of Posts and Telecommunications, Nanjing 210003, China |
|
|
Abstract We propose a protocol for directly measuring the concurrence of a two-qubit electronic pure entangled state. To complete this task, we first design a parity-check measurement (PCM) which is constructed by two polarization beam splitters (PBSs) and a charge detector. By using the PCM for three rounds, we can achieve the concurrence by calculating the total probability of picking up the odd parity states from the initial states. Since the conduction electron may be a good candidate for the realization of quantum computation, this protocol may be useful in future solid quantum computation.
|
Received: 06 January 2015
Revised: 19 January 2015
Accepted manuscript online:
|
PACS:
|
03.67.Hk
|
(Quantum communication)
|
|
03.65.Ud
|
(Entanglement and quantum nonlocality)
|
|
03.67.Lx
|
(Quantum computation architectures and implementations)
|
|
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 11474168 and 61401222), the Qing Lan Project in Jiangsu Province, China, and the Priority Academic Development Program of Jiangsu Higher Education Institutions, China. |
Corresponding Authors:
Sheng Yu-Bo
E-mail: shengyb@njupt.edu.cn
|
Cite this article:
Liu Jiong (刘炯), Zhou Lan (周澜), Sheng Yu-Bo (盛宇波) Direct measurement of the concurrence for two-qubit electron spin entangled pure state based on charge detection 2015 Chin. Phys. B 24 070309
|
[1] |
Bennett C H, Brassard G, Crépeau C, Jozsa R, Peres A and Wootters W K 1993 Phys. Rev. Lett. 70 1895
|
[2] |
Ekert A K 1991 Phys. Rev. Lett. 67 661
|
[3] |
Su X L 2014 Chin. Sci. Bull. 59 1083
|
[4] |
Zhao S M, Gong L Y, Li Y Q, Yang H, Sheng Y B and Cheng W W 2013 Chin. Phys. Lett. 30 060305
|
[5] |
Zou Y Y, Zou X J, Tian P G and Wang Y J 2013 Chin. Phys. B 22 010305
|
[6] |
Zhao L Y, Li H W, Yin Z Q, Chen W, You J and Han Z F 2014 Chin. Phys. B 23 100304
|
[7] |
Deng F G, Long G L and Liu X S 2003 Phys. Rev. A 68 042317
|
[8] |
Long G L and Liu X 2002 Phys. Rev. A 65 032302
|
[9] |
Chang Y, Xu C X, Zhang S B and Yan L 2013 Chin. Sci. Bull. 58 4571
|
[10] |
Chang Y, Xu C X, Zhang S B and Yan L 2014 Chin. Sci. Bull. 59 2541
|
[11] |
Chang Y, Zhang S B and Yan L L 2013 Chin Phys. Lett. 30 090301
|
[12] |
Hong C H, Heo J, Lim J I and Yang H J 2014 Chin. Phys. B 23 090309
|
[13] |
Chang Y, Zhang S B, Yan L L and Sheng Z W 2013 Chin. Phys. Lett. 30 050301
|
[14] |
Gu B, Huang Y G, Fang X and Chen Y L 2013 Int. J. Theor. Phys. 52 4461
|
[15] |
Gu B, Xu F, Ding L G and Zhang Y A 2012 Int. J. Theor. Phys. 51 3559
|
[16] |
Liu Y 2013 Chin. Sci. Bull. 58 2927
|
[17] |
Liu Y and Ou-Yang X P 2013 Chin. Sci. Bull. 58 2329
|
[18] |
Zheng C and Long G F 2014 Sci. Chin.: Phys. Mecha. Astro. 57 1238
|
[19] |
Su X L, Jia X J, Xie C D and Peng K C 2014 Sci. Chin.: Phys. Mecha. Astro. 57 1210
|
[20] |
Heilmann R, Gräfe M, Nolte S and Szameit A 2015 Sci. Bull. 60 96
|
[21] |
Xu J S and Li C F 2015 Sci. Bull. 60 141
|
[22] |
Gühne O, Hyllus P, Bruss D, Ekret A, Lewenstein M, Macchiavello C and Sanpera A 2002 Phys. Rev. A 66 062305
|
[23] |
Salles A, de Melo F, Retamal J C, de Matos Filho R L and Zagury N 2006 Phys. Rev. A 74 060303(R)
|
[24] |
Horodecki P 2003 Phys. Rev. Lett. 90 167901
|
[25] |
Thew R T, Nemoto K, White A G and Munro W J 2002 Phys. Rev. A 66 012303
|
[26] |
James D F V, Kwiat P G, Munro W J and White A G 2001 Phys. Rev. A 64 052312
|
[27] |
Kiesel N, Schmid C, Tóth G, Solano E and Weinfurter H 2007 Phys. Rev. Lett. 98 063604
|
[28] |
White A G, James D F V, Eberhard P H and Kwiat P G 1999 Phys. Rev. Lett. 83 3103
|
[29] |
Rehacek J, Englert B G and Kaszlikowski D 2004 Phys. Rev. A 70 052321
|
[30] |
Ling A, Soh K P, Lamas-Linares A and Kurtsiefer C 2006 Phys. Rev. A 74 022309
|
[31] |
Tóthl G and Gühne O 2005 Phys. Rev. Lett. 94 060501
|
[32] |
Bovino F A, Castagnoli G, Ekert A, Horodecki P, Alves C M and Sergienko A V 2005 Phys. Rev. Lett. 95 240407
|
[33] |
Wang H F and Zhang S 2009 Chin. Phys. B 18 2642
|
[34] |
Mohammadi M, Brańczyk A M and James D F V 2013 Phys. Rev. A 87 012117
|
[35] |
Lewenstein M, Kraus B, Cirac J I and Horodecki P 2000 Phys. Rev. A 62 052310
|
[36] |
Bennett C H, DiVincenzo D P, Smolin J A and Wootters W K 1996 Phys. Rev. A 54 3824
|
[37] |
Hill S and Wootters W K 1997 Phys. Rev. Lett. 78 5022
|
[38] |
Wootters W K 1998 Phys. Rev. Lett. 80 2445
|
[39] |
Wootters W K 2001 Quant. Inf. Comput. 1 27
|
[40] |
Walborn S P, Souto Ribeiro P H, Davidovich L, Mintert F and Buchleitner A 2006 Nature 440 1022
|
[41] |
Romero G, López C E, Lastra F, Solano E and Retamal J C 2007 Phys. Rev. A 75 032303
|
[42] |
Lee S M, Ji S W, Lee H W and Zubairy M S 2008 Phys. Rev. A 77 040301(R)
|
[43] |
Zhang L H, Yang M and Cao Z L 2013 Phys. Lett. A 377 1421
|
[44] |
Zhang L H, Yang Q, Yang M, Song W and Cao Z L 2013 Phys. Rev. A 88 062342
|
[45] |
Zhou L and Sheng Y B 2014 Phys. Rev. A 90 024301
|
[46] |
Beenakker C W J, DiVincenzo D P, Emary C and Kindermann M 2004 Phys. Rev. Lett. 93 020501
|
[47] |
Field M, Smith C G, Pepper M, Pitchie D A, Frost J E F, Jones G A C and Hasko D G 1993 Phys. Rev. Lett. 70 1311
|
[48] |
Feng X L, Kwek L C and Oh C H 2005 Phys. Rev. A 71 064301
|
[49] |
Sheng Y B, Deng F G and Long G L 2011 Phys. Lett. A 375 396
|
[50] |
Li T, Ren B C, Wei H R, Hua M and Deng F G 2013 Quantum. Inf. Process. 12 855
|
[51] |
Sheng Y B, Deng F G and Zhou H Y 2009 Phys. Lett. A 373 1823
|
[52] |
Ren B C, Hua M, Li T, Du F F and Deng F G 2012 Chin. Phys. B 21 090303
|
[53] |
Zhou L 2013 Quantum. Inf. Process. 12 2087
|
[54] |
Liu J, Zhao S Y, Zhou L and Sheng Y B 2014 Chin. Phys. B 23 020313
|
[55] |
Ren B C, Wei H R, Li T, Huang M and Deng F G 2014 Quant. Inf. Process. 13 825
|
[56] |
Gu B, Huang Y and Wang H 2014 Int. J. Theor. Phys. 53 1337
|
[57] |
Sheng Y B, Feng Z F, Ou-Yang Y, Qu C C and Zhou L 2014 Chin. Phys. Lett. 31 050303
|
[58] |
Zhang X L, Feng M and Gao K L 2006 Phys. Rev. A 73 014301
|
[59] |
Ionicioiu R 2007 Phys. Rev. A 75 032339
|
[60] |
Ji Y Q, Jin Z, Zhu A D, Wang H F and Zhang S 2014 Chin. Phys. B 23 050306
|
[61] |
Wang C, He L Y, Zhang Y, Ma H Q and Zhang R 2013 Sci. Chin.: Phys. Mecha. Astro. 56 2054
|
[62] |
Chiu Y J, Chen X and Chuang I L 2013 Phys. Rev. A 87 012305
|
[63] |
Ionicioiu R and D'Amico I 2003 Phys. Rev. B 67 041307(R)
|
[64] |
Elzerman J M, Hanson R, van Beveren W L H, Vandersypen L M K and Kouwenhoven L P 2004 Appl. Phys. Lett. 84 4617
|
[65] |
Shaner E A and Lyon S A 2004 Phys. Rev. Lett. 93 037402
|
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|