CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES |
Prev
Next
|
|
|
Entanglement spectrum of non-Abelian anyons |
Ying-Hai Wu(吴英海)† |
School of Physics and Wuhan National High Magnetic Field Center, Huazhong University of Science and Technology, Wuhan 430074, China |
|
|
Abstract Non-Abelian anyons can emerge as fractionalized excitations in two-dimensional systems with topological order. One important example is the Moore—Read fractional quantum Hall state. Its quasihole states are zero-energy eigenstates of a parent Hamiltonian, but its quasiparticle states are not. Both of them can be modeled on an equal footing using the bipartite composite fermion method. We study the entanglement spectrum of the cases with two or four non-Abelian anyons. The counting of levels in the entanglement spectrum can be understood using the edge theory of the Moore—Read state, which reflects the topological order of the system. It is shown that the fusion results of two non-Abelian anyons is determined by their distributions in the bipartite construction.
|
Received: 24 July 2021
Revised: 13 September 2021
Accepted manuscript online: 18 September 2021
|
PACS:
|
73.43.-f
|
(Quantum Hall effects)
|
|
71.10.Pm
|
(Fermions in reduced dimensions (anyons, composite fermions, Luttinger liquid, etc.))
|
|
03.65.Ud
|
(Entanglement and quantum nonlocality)
|
|
03.65.Vf
|
(Phases: geometric; dynamic or topological)
|
|
Fund: Project supported by the National Natural Science Foundation of China (Grant No. 11804107). The author thanks Hong-Hao Tu for helpful commments. |
Corresponding Authors:
Ying-Hai Wu
E-mail: yinghaiwu88@hust.edu.cn
|
Cite this article:
Ying-Hai Wu(吴英海) Entanglement spectrum of non-Abelian anyons 2022 Chin. Phys. B 31 037302
|
[1] Tsui D C, Stormer H L and Gossard A C 1982 Phys. Rev. Lett. 48 1559 [2] Cooper N R 2008 Adv. Phys. 57 539 [3] Viefers S 2008 J. Phys:Condense Matter 20 123202 [4] Dalibard J, Gerbier F, Juzeliunas G and Ohberg P 2011 Rev. Mod. Phys. 83 1523 [5] Goldman N, Juzeliunas G, Ohberg P and Spielman I B 2014 Rep. Prog. Phys. 77 126401 [6] Clark L W, Schine N, Baum C, Jia N and Simon J 2019 Nature 582 41 [7] Fletcher R J, Shaffer A, Wilson C C, Patel P B, Yan Z, Crepel V, Mukherjee B and Zwierlein M W 2021 Science 372 1318 [8] Laughlin R B 1983 Phys. Rev. Lett. 50 1395 [9] Haldane F D M 1983 Phys. Rev. Lett. 51 605 [10] Halperin B I 1983 Helv. Phys. Acta 56 75 [11] Jain J K 1989 Phys. Rev. Lett. 63 199 [12] Moore G and Read N 1991 Nucl. Phys. B 360 362 [13] Leinaas J M and Myrheim J 1977 Nuovo Cimento B 37 1 [14] Arovas D, Schrieffer J R and Wilczek F 1984 Phys. Rev. Lett. 53 722 [15] Bartolomei H, Kumar M, Bisognin R, Marguerite A, Berroir J M, Bocquillon E, Placais B, Cavanna A, Dong Q, Gennser U, Jin Y and Feve G 2020 Science 368 173 [16] Wen X G and Niu Q 1990 Phys. Rev. B 41 9377 [17] Wen X G 1995 Adv. Phys. 44 405 [18] Kitaev A Y 2003 Ann. Phys. 303 2 [19] Nayak C, Simon S H, Stern A, Freedman M and Sarma S D 2008 Rev. Mod. Phys. 80 1083 [20] Willett R, Eisenstein J P, Stormer H L, Tsui D C, Gossard A C and English J H 1987 Phys. Rev. Lett. 59 1776 [21] Radu I P, Miller J, Marcus C, Kastner M, Pfeiffer L and West K 2008 Science 320 899 [22] Dolev M, Heiblum, M, Umansky V, Stern A and Mahalu D 2008 Nature 452 829 [23] Bid A, Ofek, N, Inoue H, Heiblum M, Kane C L, Umansky V and Mahalu D 2010 Nature 466 585 [24] Willett R L, Nayak C, Shtengel K, Pfeiffer L N and West K W 2013 Phys. Rev. Lett. 111 186401 [25] Banerjee M, Heiblum M, Umansky V, Feldman D E, Oreg Y and Stern A 2018 Nature 559 205 [26] Lee S S, Ryu S, Nayak C and Fisher M P A 2007 Phys. Rev. Lett. 99 236806 [27] Levin M, Halperin B I and Rosenow B 2007 Phys. Rev. Lett. 99 236806 [28] Zucker P T and Feldman D E 2016 Phys. Rev. Lett. 117 096802 [29] Mishmash R V, Mross D F, Alicea J and Motrunich O I 2018 Phys. Rev. B 98 081107 [30] Antonic L, Vucicevic J and Milovanovic M V 2018 Phys. Rev. B 98 115107 [31] Cooper N R, Wilkin N K and Gunn J M F 2001 Phys. Rev. Lett. 87 120405 [32] Regnault N and Jolicoeur T 2003 Phys. Rev. Lett. 91 030402 [33] Wang, Y F, Yao H, Gu Z C, Gong C D and Sheng D N 2012 Phys. Rev. Lett. 108 126805 [34] Zhu W, Gong S S, Haldane F D M and Sheng D N 2015 Phys. Rev. B 92 165106 [35] Greiter M and Thomale R 2009 Phys. Rev. Lett. 102 207203 [36] Glasser I, Cirac J I, Sierra G and Nielsen A E B 2015 New J. Phys. 17 082001 [37] Wildeboer J and Bonesteel N E 2016 Phys. Rev. B 94 045125 [38] Liu Z X, Tu H H, Wu Y H, He R Q, Liu X J, Zhou Y and Ng T K 2018 Phys. Rev. B 97 195158 [39] Chen J Y, Vanderstraeten L, Capponi S and Poilblanc D 2018 Phys. Rev. B 98 184409 [40] Li H and Haldane F D M 2008 Phys. Rev. Lett. 101 010504 [41] Papic Z, Bernevig B A and Regnault N 2011 Phys. Rev. Lett. 106 056801 [42] Sreejith G J, Toke C, Wojs A and Jain J K 2011 Phys. Rev. Lett. 107 086806 [43] Sreejith G J, Wojs A and Jain J K 2011 Phys. Rev. Lett. 107 136802 [44] Rodriguez I D, Sterdyniak A, Hermanns M, Slingerland J K and Regnault N 2012 Phys. Rev. B 85 035128 [45] Read N and Green D 2000 Phys. Rev. B 61 10267 [46] Scarola V W, Park K and Jain J K 2000 Nature 406 863 [47] Lu H, Das Sarma S and Park K 2010 Phys. Rev. B 82 201303 [48] Nayak C and Wilczek F 1996 Nucl. Phys. B 479 529 [49] Bonderson P, Feiguin A E and Nayak C 2011 Phys. Rev. Lett. 106 186802 [50] Moller G, Wojs A and Cooper N R 2011 Phys. Rev. Lett. 107 036803 [51] Yang B, Hu Z X, Papic Z and Haldane F D M 2012 Phys. Rev. Lett. 108 256807 [52] Jeon G S and Jain J K 2003 Phys. Rev. B 68 165346 [53] Sterdyniak A, Regnault N and Bernevig B A 2011 Phys. Rev. Lett. 106 100405 [54] Sterdyniak A, Chandran A, Regnault N, Bernevig B A and Bonderson P 2012 Phys. Rev. B 85 125308 [55] Dubail J, Read N and Rezayi E H 2012 Phys. Rev. B 85 115321 [56] Rodriguez I D, Simon S H and Slingerland J K 2012 Phys. Rev. Lett. 108 256806 [57] Wen X G 1993 Phys. Rev. Lett. 70 355 [58] Milovanovic M and Read N 1996 Phys. Rev. B 53 13559 [59] Wan X, Hu Z X, Rezayi E H and Yang K 2008 Phys. Rev. B 77 165316 [60] Wan X, Yang K and Rezayi E H 2006 Phys. Rev. Lett. 97 256804 [61] Sreejith G J, Wu Y H, Wojs A and Jain J K 2013 Phys. Rev. B 87 245125 [62] Fernandez-Gonzalez C, Mong R S K, Landon-Cardinal O, Perez-Garcia D and Schuch N 2016 Phys. Rev. B 94 155106 |
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|