Please wait a minute...
Chin. Phys. B, 2022, Vol. 31(4): 048704    DOI: 10.1088/1674-1056/ac40fb
INTERDISCIPLINARY PHYSICS AND RELATED AREAS OF SCIENCE AND TECHNOLOGY Prev   Next  

Optimized quantum singular value thresholding algorithm based on a hybrid quantum computer

Yangyang Ge(葛阳阳), Zhimin Wang(王治旻), Wen Zheng(郑文), Yu Zhang(张钰), Xiangmin Yu(喻祥敏), Renjie Kang(康人杰), Wei Xin(辛蔚), Dong Lan(兰栋), Jie Zhao(赵杰), Xinsheng Tan(谭新生), Shaoxiong Li(李邵雄), and Yang Yu(于扬)
National Laboratory of Solid State Microstructures, School of Physics, Nanjing University, Nanjing 210093, China
Abstract  Quantum singular value thresholding (QSVT) algorithm, as a core module of many mathematical models, seeks the singular values of a sparse and low rank matrix exceeding a threshold and their associated singular vectors. The existing all-qubit QSVT algorithm demands lots of ancillary qubits, remaining a huge challenge for realization on nearterm intermediate-scale quantum computers. In this paper, we propose a hybrid QSVT (HQSVT) algorithm utilizing both discrete variables (DVs) and continuous variables (CVs). In our algorithm, raw data vectors are encoded into a qubit system and the following data processing is fulfilled by hybrid quantum operations. Our algorithm requires O[log(MN)] qubits with O(1) qumodes and totally performs O(1) operations, which significantly reduces the space and runtime consumption.
Keywords:  singular value thresholding algorithm      hybrid quantum computation  
Received:  31 October 2021      Revised:  23 November 2021      Accepted manuscript online:  08 December 2021
PACS:  87.55.kd (Algorithms)  
  03.67.Ac (Quantum algorithms, protocols, and simulations)  
Fund: Project supported by the Key Research and Development Program of Guangdong Province, China (Grant No. 2018B030326001) and the National Natural Science Foundation of China (Grant Nos. 61521001, 12074179, and 11890704).
Corresponding Authors:  Shaoxiong Li, Yang Yu     E-mail:  shaoxiong.li@nju.edu.cn;yuyang@nju.edu.cn

Cite this article: 

Yangyang Ge(葛阳阳), Zhimin Wang(王治旻), Wen Zheng(郑文), Yu Zhang(张钰), Xiangmin Yu(喻祥敏), Renjie Kang(康人杰), Wei Xin(辛蔚), Dong Lan(兰栋), Jie Zhao(赵杰), Xinsheng Tan(谭新生), Shaoxiong Li(李邵雄), and Yang Yu(于扬) Optimized quantum singular value thresholding algorithm based on a hybrid quantum computer 2022 Chin. Phys. B 31 048704

[1] Nielsen M A and Chuang I L 2010 Quantum Computation and Quantum Information, 10th edn. (Cambridge, New York:Cambridge University Press)
[2] Cirac J I and Zoller P 1995 Phys. Rev. Lett. 74 4091
[3] Lau H K and James D F V 2012 Phys. Rev. A 85 062329
[4] Shen C, Zhang Z and Duan L M 2014 Phys. Rev. Lett. 112 050504
[5] Chuang I L, Vandersypen L M K, Zhou X, Leung D W and Lloyd S 1998 Nature 393 143
[6] Jones J A and Mosca M 1998 J. Chem. Phys. 109 1648
[7] Knill E, Laflamme R and Milburn G J 2001 Nature 409 46
[8] Pittman T B, Jacobs B C and Franson J D 2002 Phys. Rev. Lett. 88 257902
[9] Franson J D, Jacobs B C and Pittman T B 2004 Phys. Rev. A 70 062302
[10] Martinis J M and Osborne K 2004 (Preprint cond-mat/0402415)
[11] Blais A, Huang R S, Wallraff A, Girvin S M and Schoelkopf R J 2004 Phys. Rev. A 69 062320
[12] Blais A, Grimsmo A L, Girvin S M and Wallraff A 2021 Rev. Mod. Phys. 93 025005
[13] Krantz P, Kjaergaard M, Yan F, Orlando T P, Gustavsson S and Oliver W D 2019 Appl. Phys. Rev. 6 021318
[14] Liu N, Thompson J, Weedbrook C, Lloyd S, Vedral V, Gu M and Modi K 2016 Phys. Rev. A 93 052304
[15] Lloyd S 2003 Hybrid quantum computing, in Quantum Information with Continuous Variables (Dordrecht:Springer)
[16] van Loock P, Munro W J, Nemoto K, Spiller T P, Ladd T D, Braunstein S L and Milburn G J 2008 Phys. Rev. A 78 022303
[17] Lloyd S and Braunstein S L 1999 Phys. Rev. Lett. 82 1784
[18] Jolliffe I T 2002 Principal Component Analysis (Springer)
[19] Lloyd S, Mohseni M and Rebentrost P 2014 Nat. Phys. 10 631
[20] Lin J, Bao W S, Zhang S, Li T and Wang X 2019 Phys. Lett. A 383 2862
[21] Biamonte J, Wittek P, Pancotti N, Rebentrost P, Wiebe N and Lloyd S 2017 Nature 549 195
[22] Duan B, Yuan J, Liu Y and Li D 2018 Phys. Rev. A 98 012308
[23] Duan B, Yuan J, Liu Y and Li D 2017 Phys. Rev. A 96 032301
[24] Harrow A W, Hassidim A and Lloyd S 2009 Phys. Rev. Lett. 103 150502
[25] Giovannetti V, Lloyd S and Maccone L 2008 Phys. Rev. A 78 052310
[26] Hong F Y, Xiang Y, Zhu Z Y, Jiang L Z and Wu L N 2012 Phys. Rev. A 86 010306
[27] Patton K R and Fischer U R 2013 Phys. Rev. Lett. 111 240504
[28] Lau H K and Plenio M B 2016 Phys. Rev. Lett. 117 100501
[29] Vedral V, Barenco A and Ekert A 1996 Phys. Rev. A 54 147
[30] Cong I and Duan L 2016 New J. Phys. 18 073011
[1] Image reconstruction from few views by l0-norm optimization
Sun Yu-Li (孙玉立), Tao Jin-Xu (陶进绪). Chin. Phys. B, 2014, 23(7): 078703.
No Suggested Reading articles found!