|
|
Multi-user quantum key distribution with collective eavesdropping detection over collective-noise channels |
Huang Wei (黄伟)a b, Wen Qiao-Yan (温巧燕)a, Liu Bin (刘斌)a, Gao Fei (高飞)a |
a State Key Laboratory of Networking and Switching Technology, Beijing University of Posts and Telecommunications, Beijing 100876, China; b Science and Technology on Communication Security Laboratory, Chengdu 610041, China |
|
|
Abstract A multi-user quantum key distribution protocol is proposed with single particles and the collective eavesdropping detection strategy on a star network. By utilizing this protocol, any two users of the network can accomplish quantum key distribution with the help of a serving center. Due to the utilization of the collective eavesdropping detection strategy, the users of the protocol just need to have the ability of performing certain unitary operations. Furthermore, we present three fault-tolerant versions of the proposed protocol, which can combat with the errors over different collective-noise channels. The security of all the proposed protocols is guaranteed by the theorems on quantum operation discrimination.
|
Received: 26 December 2014
Revised: 17 February 2015
Accepted manuscript online:
|
PACS:
|
03.67.Dd
|
(Quantum cryptography and communication security)
|
|
03.67.Hk
|
(Quantum communication)
|
|
03.67.Pp
|
(Quantum error correction and other methods for protection against decoherence)
|
|
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 61272057, 61170270, and 61309029), Beijing Higher Education Young Elite Teacher Project, China (Grant Nos. YETP0475 and YETP0477), and BUPT Excellent Ph.D. Students Foundation, China (Grant No. CX201441). |
Corresponding Authors:
Huang Wei
E-mail: huangwei096505@aliyun.com
|
Cite this article:
Huang Wei (黄伟), Wen Qiao-Yan (温巧燕), Liu Bin (刘斌), Gao Fei (高飞) Multi-user quantum key distribution with collective eavesdropping detection over collective-noise channels 2015 Chin. Phys. B 24 070308
|
[1] |
Bennett C H and Brassard G 1984 Proceedings of the IEEE International Conference on Computers, Systems and Signal Processings Bangalore, India, pp. 175-179
|
[2] |
Ekert A E 1991 Phys. Rev. Lett. 67 661
|
[3] |
Deng F G and Long G L 2003 Phys. Rev. A 68 042315
|
[4] |
Deng F G and Long G L 2004 Phys. Rev. A 70 012311
|
[5] |
Li H W, Yin Z Q, Wang S, Bao W S, Guo G C and Han Z F 2011 Chin. Phys. B 20 100306
|
[6] |
Phoenix S, Barnett S, Townsend P and Blow K 1995 J. Modern Opt. 42 1155
|
[7] |
Lin S, Huang C and Liu X F 2013 Phys. Scr. 87 035008
|
[8] |
Lo H K, Curty M and Qi B 2012 Phys. Rev. Lett. 108 130503
|
[9] |
Tang Y L, Yin H L and Chen S J 2014 Phys. Rev. Lett. 113 190501
|
[10] |
Wang Y, Bao W S, Li H W, Zhou C and Li Y 2014 Chin. Phys. B 23 080303
|
[11] |
Wang X B 2007 Phys. Rev. A 75 052301
|
[12] |
Tomamichel M, Lim C C W, Gisin N and Renner R 2012 Nat. Commun. 3 634
|
[13] |
Zhao L Y, Li H W, Yin Z Q, Chen W, You J and Han Z F 2014 Chin. Phys. B 23 100304
|
[14] |
Huang P, Fan J and Zeng G H 2014 Phys. Rev. A 89 042330
|
[15] |
Long G L and Liu X S 2002 Phys. Rev. A 65 032302
|
[16] |
Boström, K and Felbinger T 2002 Phys. Rev. Lett. 89 187902
|
[17] |
Wang C, Deng F G, Li Y S, Liu X S and Long G L 2005 Phys. Rev. A 71 044305
|
[18] |
Deng F G and Long G L 2004 Phys. Rev. A 69 052319
|
[19] |
Deng F G, Long G L and Liu X S 2003 Phys. Rev. A 68 042317
|
[20] |
Man Z X, Zhang Z J and Li Y 2005 Chin. Phys. Lett. 22 18
|
[21] |
Gu B, Huang Y G, Fang X and Chen Y L 2013 Int. J. Theor. Phys. 52 4461
|
[22] |
Ye T Y and Jiang L Z 2013 Chin. Phys. Lett. 30 040305
|
[23] |
Hillery M, Bužek V and Bérthiaume A 1999 Phys. Rev. A 59 1829
|
[24] |
Wang T Y and Wen Q Y 2011 Quant. Inf. Comput. 11 434
|
[25] |
Yang Y G, Wang Y A, Chai H P, Teng Y W and Zhang H 2013 Opt. Commun. 284 3479
|
[26] |
Zhou N R, Song H C and Gong L H 2013 Int. J. Theor. Phys. 52 4174
|
[27] |
Chen X B, Xu G, Su Y and Yang Y X 2014 Quant. Inf. Comput. 14 589
|
[28] |
Zhang Z J 2006 Phys. A 361 233
|
[29] |
Wang T Y, Cai X Q and Zhang R L 2014 Quantum Inf. Process. 13 1677
|
[30] |
Yang Y G and Wen Q Y 2009 J. Phys. A: Math. Theor. 42 055305
|
[31] |
Zeng G H, Lee M H, Guo Y and He G Q 2007 Int. J. Quantum Inf. 5 553
|
[32] |
Zeng G H, Keitel C H 2002 Phys. Rev. A 65 042312
|
[33] |
Wen X J 2010 Phys. Scr. 82 065403
|
[34] |
Shih H, Lee K and Hwang T 2009 IEEE J. Sel. Top. Quant. Electron. 15 1602
|
[35] |
Gao F, Qin S J, Guo F Z and Wen Q Y 2011 IEEE J. Quant. Electron. 47 630
|
[36] |
Liu B, Gao F and Wen Q Y 2011 IEEE J. Quant. Electron. 47 1383
|
[37] |
Liu B, Gao F, Jia H Y and Huang W 2013 Quantum Inf. Process. 12 887
|
[38] |
Lin S, Wen Q Y, Qin S J and Zhu F C 2009 Opt. Commun. 282 4455
|
[39] |
Gao G 2010 Opt. Commun. 283 2997
|
[40] |
Liu B, Gao F and Wen Q Y 2011 Int. J. Theor. Phys. 51 1211
|
[41] |
Huang W, Wen Q Y, Liu B, Gao F and Chen H 2012 Int. J. Theor. Phys. 51 2787
|
[42] |
Li X H, Deng F G and Zhou H Y 2008 Phys. Rev. A 78 022321
|
[43] |
Zanardi P and Rasetti M 1997 Phys. Rev. Lett. 79 3306
|
[44] |
Lin S 2014 Quantum Inf. Comput. 14 845
|
[45] |
Yang Y G, Teng Y W, Chai H P and Wen Q Y 2011 Phys. Scr. 83 025003
|
[46] |
Yang C W, Tsai C W amd Hwang T 2013 Quantum Inf. Process. 12 3043
|
[47] |
Wu G T, Zhou N R, Gong L H and Liu S Q 2014 Acta Phys. Sin. 63 060302 (in Chinese)
|
[48] |
Chang Y, Zhang S B, Li J and Yan L L 2014 Sci. China-Phys. Mech. Astron. 57 1907
|
[49] |
Huang W, Wen Q Y, Jia H Y, Qin S J and Gao F 2012 Chin. Phys. B 21 100308
|
[50] |
Cabello A 2007 Phys. Rev. A 75 020301
|
[51] |
Sun Y, Wen Q Y, Gao F and Zhu F C 2009 Phys. Rev. A 80 032321
|
[52] |
Gu B, Zhang C Y, Cheng G S and Huang Y G 2011 Sci. China-Phys. Mech. Astron. 54 942
|
[53] |
Walton Z D, Abouraddy A F and Sergienko A V 2003 Phys. Rev. Lett. 91 087901
|
[54] |
Kwiat P G, Berglund A J, Altepeter J B and White A G 2000 Science 290 498
|
[55] |
Qin S J, Gao F, Wen Q Y and Zhu F C 2006 Phys. Lett. A 357 101
|
[56] |
Zhang Z J, Li Y and Man Z X 2005 Phys. Rev. A 71 044301
|
[57] |
Deng F G, Li X H, Chen P and Zhou H Y 2006 arXiv: 0604060
|
[58] |
Mauro D'Ariano G, Presti P L and Paris M G A 2001 Phys. Rev. Lett. 87 270404
|
[59] |
Gisin N, Ribordy G, Tittel W and Zbinden H 2002 Rev. Mod. Phys. 74 145
|
[60] |
Deutsch D, Ekert A, Jozsa R, Macchiavello C, Popescu S and Sanpera A 1996 Phys. Rev. Lett. 77 2818
|
[61] |
Cai Q Y 2006 Phys. Lett. A 351 23
|
[62] |
Li X H, Deng F G and Zhou H Y 2006 Phys. Rev. A 74 054302
|
[63] |
Xie C M, Liu Y M, Li G F and Zhang Z J 2014 Quantum Inf. Process. 13 2713
|
[64] |
Gao F, Qin S J, Wen Q Y and Zhu F C 2010 Opt. Commun. 283 192
|
[65] |
Wang G M and Ying M S 2006 Phys. Rev. A 73 042301
|
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|