Please wait a minute...
Chin. Phys. B, 2015, Vol. 24(7): 070308    DOI: 10.1088/1674-1056/24/7/070308
GENERAL Prev   Next  

Multi-user quantum key distribution with collective eavesdropping detection over collective-noise channels

Huang Wei (黄伟)a b, Wen Qiao-Yan (温巧燕)a, Liu Bin (刘斌)a, Gao Fei (高飞)a
a State Key Laboratory of Networking and Switching Technology, Beijing University of Posts and Telecommunications, Beijing 100876, China;
b Science and Technology on Communication Security Laboratory, Chengdu 610041, China
Abstract  A multi-user quantum key distribution protocol is proposed with single particles and the collective eavesdropping detection strategy on a star network. By utilizing this protocol, any two users of the network can accomplish quantum key distribution with the help of a serving center. Due to the utilization of the collective eavesdropping detection strategy, the users of the protocol just need to have the ability of performing certain unitary operations. Furthermore, we present three fault-tolerant versions of the proposed protocol, which can combat with the errors over different collective-noise channels. The security of all the proposed protocols is guaranteed by the theorems on quantum operation discrimination.
Keywords:  quantum cryptography      quantum key distribution      collective eavesdropping detection      collective noise  
Received:  26 December 2014      Revised:  17 February 2015      Accepted manuscript online: 
PACS:  03.67.Dd (Quantum cryptography and communication security)  
  03.67.Hk (Quantum communication)  
  03.67.Pp (Quantum error correction and other methods for protection against decoherence)  
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 61272057, 61170270, and 61309029), Beijing Higher Education Young Elite Teacher Project, China (Grant Nos. YETP0475 and YETP0477), and BUPT Excellent Ph.D. Students Foundation, China (Grant No. CX201441).
Corresponding Authors:  Huang Wei     E-mail:  huangwei096505@aliyun.com

Cite this article: 

Huang Wei (黄伟), Wen Qiao-Yan (温巧燕), Liu Bin (刘斌), Gao Fei (高飞) Multi-user quantum key distribution with collective eavesdropping detection over collective-noise channels 2015 Chin. Phys. B 24 070308

[1] Bennett C H and Brassard G 1984 Proceedings of the IEEE International Conference on Computers, Systems and Signal Processings Bangalore, India, pp. 175-179
[2] Ekert A E 1991 Phys. Rev. Lett. 67 661
[3] Deng F G and Long G L 2003 Phys. Rev. A 68 042315
[4] Deng F G and Long G L 2004 Phys. Rev. A 70 012311
[5] Li H W, Yin Z Q, Wang S, Bao W S, Guo G C and Han Z F 2011 Chin. Phys. B 20 100306
[6] Phoenix S, Barnett S, Townsend P and Blow K 1995 J. Modern Opt. 42 1155
[7] Lin S, Huang C and Liu X F 2013 Phys. Scr. 87 035008
[8] Lo H K, Curty M and Qi B 2012 Phys. Rev. Lett. 108 130503
[9] Tang Y L, Yin H L and Chen S J 2014 Phys. Rev. Lett. 113 190501
[10] Wang Y, Bao W S, Li H W, Zhou C and Li Y 2014 Chin. Phys. B 23 080303
[11] Wang X B 2007 Phys. Rev. A 75 052301
[12] Tomamichel M, Lim C C W, Gisin N and Renner R 2012 Nat. Commun. 3 634
[13] Zhao L Y, Li H W, Yin Z Q, Chen W, You J and Han Z F 2014 Chin. Phys. B 23 100304
[14] Huang P, Fan J and Zeng G H 2014 Phys. Rev. A 89 042330
[15] Long G L and Liu X S 2002 Phys. Rev. A 65 032302
[16] Boström, K and Felbinger T 2002 Phys. Rev. Lett. 89 187902
[17] Wang C, Deng F G, Li Y S, Liu X S and Long G L 2005 Phys. Rev. A 71 044305
[18] Deng F G and Long G L 2004 Phys. Rev. A 69 052319
[19] Deng F G, Long G L and Liu X S 2003 Phys. Rev. A 68 042317
[20] Man Z X, Zhang Z J and Li Y 2005 Chin. Phys. Lett. 22 18
[21] Gu B, Huang Y G, Fang X and Chen Y L 2013 Int. J. Theor. Phys. 52 4461
[22] Ye T Y and Jiang L Z 2013 Chin. Phys. Lett. 30 040305
[23] Hillery M, Bužek V and Bérthiaume A 1999 Phys. Rev. A 59 1829
[24] Wang T Y and Wen Q Y 2011 Quant. Inf. Comput. 11 434
[25] Yang Y G, Wang Y A, Chai H P, Teng Y W and Zhang H 2013 Opt. Commun. 284 3479
[26] Zhou N R, Song H C and Gong L H 2013 Int. J. Theor. Phys. 52 4174
[27] Chen X B, Xu G, Su Y and Yang Y X 2014 Quant. Inf. Comput. 14 589
[28] Zhang Z J 2006 Phys. A 361 233
[29] Wang T Y, Cai X Q and Zhang R L 2014 Quantum Inf. Process. 13 1677
[30] Yang Y G and Wen Q Y 2009 J. Phys. A: Math. Theor. 42 055305
[31] Zeng G H, Lee M H, Guo Y and He G Q 2007 Int. J. Quantum Inf. 5 553
[32] Zeng G H, Keitel C H 2002 Phys. Rev. A 65 042312
[33] Wen X J 2010 Phys. Scr. 82 065403
[34] Shih H, Lee K and Hwang T 2009 IEEE J. Sel. Top. Quant. Electron. 15 1602
[35] Gao F, Qin S J, Guo F Z and Wen Q Y 2011 IEEE J. Quant. Electron. 47 630
[36] Liu B, Gao F and Wen Q Y 2011 IEEE J. Quant. Electron. 47 1383
[37] Liu B, Gao F, Jia H Y and Huang W 2013 Quantum Inf. Process. 12 887
[38] Lin S, Wen Q Y, Qin S J and Zhu F C 2009 Opt. Commun. 282 4455
[39] Gao G 2010 Opt. Commun. 283 2997
[40] Liu B, Gao F and Wen Q Y 2011 Int. J. Theor. Phys. 51 1211
[41] Huang W, Wen Q Y, Liu B, Gao F and Chen H 2012 Int. J. Theor. Phys. 51 2787
[42] Li X H, Deng F G and Zhou H Y 2008 Phys. Rev. A 78 022321
[43] Zanardi P and Rasetti M 1997 Phys. Rev. Lett. 79 3306
[44] Lin S 2014 Quantum Inf. Comput. 14 845
[45] Yang Y G, Teng Y W, Chai H P and Wen Q Y 2011 Phys. Scr. 83 025003
[46] Yang C W, Tsai C W amd Hwang T 2013 Quantum Inf. Process. 12 3043
[47] Wu G T, Zhou N R, Gong L H and Liu S Q 2014 Acta Phys. Sin. 63 060302 (in Chinese)
[48] Chang Y, Zhang S B, Li J and Yan L L 2014 Sci. China-Phys. Mech. Astron. 57 1907
[49] Huang W, Wen Q Y, Jia H Y, Qin S J and Gao F 2012 Chin. Phys. B 21 100308
[50] Cabello A 2007 Phys. Rev. A 75 020301
[51] Sun Y, Wen Q Y, Gao F and Zhu F C 2009 Phys. Rev. A 80 032321
[52] Gu B, Zhang C Y, Cheng G S and Huang Y G 2011 Sci. China-Phys. Mech. Astron. 54 942
[53] Walton Z D, Abouraddy A F and Sergienko A V 2003 Phys. Rev. Lett. 91 087901
[54] Kwiat P G, Berglund A J, Altepeter J B and White A G 2000 Science 290 498
[55] Qin S J, Gao F, Wen Q Y and Zhu F C 2006 Phys. Lett. A 357 101
[56] Zhang Z J, Li Y and Man Z X 2005 Phys. Rev. A 71 044301
[57] Deng F G, Li X H, Chen P and Zhou H Y 2006 arXiv: 0604060
[58] Mauro D'Ariano G, Presti P L and Paris M G A 2001 Phys. Rev. Lett. 87 270404
[59] Gisin N, Ribordy G, Tittel W and Zbinden H 2002 Rev. Mod. Phys. 74 145
[60] Deutsch D, Ekert A, Jozsa R, Macchiavello C, Popescu S and Sanpera A 1996 Phys. Rev. Lett. 77 2818
[61] Cai Q Y 2006 Phys. Lett. A 351 23
[62] Li X H, Deng F G and Zhou H Y 2006 Phys. Rev. A 74 054302
[63] Xie C M, Liu Y M, Li G F and Zhang Z J 2014 Quantum Inf. Process. 13 2713
[64] Gao F, Qin S J, Wen Q Y and Zhu F C 2010 Opt. Commun. 283 192
[65] Wang G M and Ying M S 2006 Phys. Rev. A 73 042301
[1] Security of the traditional quantum key distribution protocolswith finite-key lengths
Bao Feng(冯宝), Hai-Dong Huang(黄海东), Yu-Xiang Bian(卞宇翔), Wei Jia(贾玮), Xing-Yu Zhou(周星宇), and Qin Wang(王琴). Chin. Phys. B, 2023, 32(3): 030307.
[2] Performance of phase-matching quantum key distribution based on wavelength division multiplexing technology
Haiqiang Ma(马海强), Yanxin Han(韩雁鑫), Tianqi Dou(窦天琦), and Pengyun Li(李鹏云). Chin. Phys. B, 2023, 32(2): 020304.
[3] Temperature characterizations of silica asymmetric Mach-Zehnder interferometer chip for quantum key distribution
Dan Wu(吴丹), Xiao Li(李骁), Liang-Liang Wang(王亮亮), Jia-Shun Zhang(张家顺), Wei Chen(陈巍), Yue Wang(王玥), Hong-Jie Wang(王红杰), Jian-Guang Li(李建光), Xiao-Jie Yin(尹小杰), Yuan-Da Wu(吴远大), Jun-Ming An(安俊明), and Ze-Guo Song(宋泽国). Chin. Phys. B, 2023, 32(1): 010305.
[4] Improvement of a continuous-variable measurement-device-independent quantum key distribution system via quantum scissors
Lingzhi Kong(孔令志), Weiqi Liu(刘维琪), Fan Jing(荆凡), Zhe-Kun Zhang(张哲坤), Jin Qi(齐锦), and Chen He(贺晨). Chin. Phys. B, 2022, 31(9): 090304.
[5] Practical security analysis of continuous-variable quantum key distribution with an unbalanced heterodyne detector
Lingzhi Kong(孔令志), Weiqi Liu(刘维琪), Fan Jing(荆凡), and Chen He(贺晨). Chin. Phys. B, 2022, 31(7): 070303.
[6] Quantum key distribution transmitter chip based on hybrid-integration of silica and lithium niobates
Xiao Li(李骁), Liang-Liang Wang(王亮亮), Jia-shun Zhang(张家顺), Wei Chen(陈巍), Yue Wang(王玥), Dan Wu (吴丹), and Jun-Ming An (安俊明). Chin. Phys. B, 2022, 31(6): 064212.
[7] Short-wave infrared continuous-variable quantum key distribution over satellite-to-submarine channels
Qingquan Peng(彭清泉), Qin Liao(廖骎), Hai Zhong(钟海), Junkai Hu(胡峻凯), and Ying Guo(郭迎). Chin. Phys. B, 2022, 31(6): 060306.
[8] Phase-matching quantum key distribution with light source monitoring
Wen-Ting Li(李文婷), Le Wang(王乐), Wei Li(李威), and Sheng-Mei Zhao(赵生妹). Chin. Phys. B, 2022, 31(5): 050310.
[9] Quantum private comparison of arbitrary single qubit states based on swap test
Xi Huang(黄曦), Yan Chang(昌燕), Wen Cheng(程稳), Min Hou(侯敏), and Shi-Bin Zhang(张仕斌). Chin. Phys. B, 2022, 31(4): 040303.
[10] Parameter estimation of continuous variable quantum key distribution system via artificial neural networks
Hao Luo(罗浩), Yi-Jun Wang(王一军), Wei Ye(叶炜), Hai Zhong(钟海), Yi-Yu Mao(毛宜钰), and Ying Guo(郭迎). Chin. Phys. B, 2022, 31(2): 020306.
[11] Detecting the possibility of a type of photon number splitting attack in decoy-state quantum key distribution
Xiao-Ming Chen(陈小明), Lei Chen(陈雷), and Ya-Long Yan(阎亚龙). Chin. Phys. B, 2022, 31(12): 120304.
[12] Realization of simultaneous balanced multi-outputs for multi-protocols QKD decoding based onsilica-based planar lightwave circuit
Jin You(游金), Yue Wang(王玥), and Jun-Ming An(安俊明). Chin. Phys. B, 2021, 30(8): 080302.
[13] Practical decoy-state BB84 quantum key distribution with quantum memory
Xian-Ke Li(李咸柯), Xiao-Qian Song(宋小谦), Qi-Wei Guo(郭其伟), Xing-Yu Zhou(周星宇), and Qin Wang(王琴). Chin. Phys. B, 2021, 30(6): 060305.
[14] Continuous-variable quantum key distribution based on photon addition operation
Xiao-Ting Chen(陈小婷), Lu-Ping Zhang(张露萍), Shou-Kang Chang(常守康), Huan Zhang(张欢), and Li-Yun Hu(胡利云). Chin. Phys. B, 2021, 30(6): 060304.
[15] Three-party reference frame independent quantum key distribution protocol
Comfort Sekga and Mhlambululi Mafu. Chin. Phys. B, 2021, 30(12): 120301.
No Suggested Reading articles found!