Please wait a minute...
Chin. Phys. B, 2022, Vol. 31(7): 070302    DOI: 10.1088/1674-1056/ac4a61
GENERAL Prev   Next  

Robustness of two-qubit and three-qubit states in correlated quantum channels

Zhan-Yun Wang(王展云)1,†, Feng-Lin Wu(吴风霖)2,3, Zhen-Yu Peng(彭振宇)4, and Si-Yuan Liu(刘思远)2,3
1 School of Electronic Engineering, Xi'an University of Posts and Telecommunications, Xi'an 710121, China;
2 Institute of Modern Physics, Northwest University, Xi'an 710127, China;
3 Shaanxi Key Laboratory for Theoretical Physics Frontiers, Xi'an 710127, China;
4 School of Physics, Northwest University, Xi'an 710127, China
Abstract  We investigate how the correlated actions of quantum channels affect the robustness of entangled states. We consider the Bell-like state and random two-qubit pure states in the correlated depolarizing, bit flip, bit-phase flip, and phase flip channels. It is found that the robustness of two-qubit pure states can be noticeably enhanced due to the correlations between consecutive actions of these noisy channels, and the Bell-like state is always the most robust one. We also consider the robustness of three-qubit pure states in correlated noisy channels. For the correlated bit flip and phase flip channels, the result shows that although the most robust and most fragile states are locally unitary equivalent, they exhibit different robustness in different correlated channels, and the effect of channel correlations on them is also significantly different. However, for the correlated depolarizing and bit-phase flip channels, the robustness of two special three-qubit pure states is exactly the same. Moreover, compared with the random three-qubit pure states, they are neither the most robust states nor the most fragile states.
Keywords:  correlated quantum channel      entanglement      concurrence      negativity  
Received:  19 October 2021      Revised:  17 December 2021      Accepted manuscript online:  12 January 2022
PACS:  03.65.Yz (Decoherence; open systems; quantum statistical methods)  
  03.67.Bg (Entanglement production and manipulation)  
  03.65.Ud (Entanglement and quantum nonlocality)  
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 11705146 and 12175179), the Natural Science Basic Research Program of Shaanxi Province, China (Grant No. 2019JQ-863), and the Open Project of Shaanxi Key Laboratory for Theoretical Physics Frontiers (Grant No. SXKLTPF-K20190606).
Corresponding Authors:  Zhan-Yun Wang     E-mail:  zywang@xupt.edu.cn

Cite this article: 

Zhan-Yun Wang(王展云), Feng-Lin Wu(吴风霖), Zhen-Yu Peng(彭振宇), and Si-Yuan Liu(刘思远) Robustness of two-qubit and three-qubit states in correlated quantum channels 2022 Chin. Phys. B 31 070302

[1] Nielsen M A and Chuang I L 2010 Quantum Computation and Quantum Information (Cambridge:Cambridge University Press)
[2] Horodecki R, Horodecki P, Horodecki M and Horodecki K 2009 Rev. Mod. Phys. 81 865
[3] Breuer H P and Petruccione F 2007 The Theory of Open Quantum Systems (Oxford:Oxford University Press)
[4] Hu M L, Hu X, Wang J, Peng Y, Zhang Y R and Fan H 2018 Phys. Rep. 762 1
[5] Hu M L and Fan H 2016 Sci. Rep. 6 29260
[6] Vidal G and Tarrach R 1999 Phys. Rev. A 59 141
[7] Simon C and Kempe J 2002 Phys. Rev. A 65 052327
[8] Aolita L, Chaves R, Cavalcanti D, Acín A and Davidovich L 2008 Phys. Rev. Lett. 100 080501
[9] Aolita L, Cavalcanti D, Acín A, Salles A, Tiersch M, Buchleitner A and de Melo F 2009 Phys. Rev. A 79 032322
[10] Borras A, Majtey A P, Plastino A R, Casas M and Plastino A 2009 Phys. Rev. A 79 022108
[11] Cavalcanti D, Chaves R, Aolita L, Davidovich L and Acín A 2009 Phys. Rev. Lett. 103 030502
[12] Aolita L, Cavalcanti D, Chaves R, Dhara C, Davidovich L and Acín A 2010 Phys. Rev. A 82 032317
[13] Pang C Q, Zhang F L, Jiang Y, Liang M L and Chen J L 2013 arXiv:1202.2798v4[quant-ph]
[14] Ali M and Güuhne O 2014 J. Phys. B:At. Mol. Opt. Phys. 47 055503
[15] Ali M 2015 Chin. Phys. Lett. 32 060302
[16] Kim K I, Zhao B K, Li H M and Lu J B 2014 Commun. Theor. Phys. 62 667
[17] Li H M and Zhao B K 2018 Ann. Phys. (Berlin) 530 1800053
[18] Li H M and Su X M 2019 Eur. Phys. J. D 73 56
[19] Liu Z and Fan H 2009 Phys. Rev. A 79 064305
[20] Zhao B K and Deng F G 2010 Phys. Rev. A 82 014301
[21] Filippov S N, Melnikov A A and Ziman M 2013 Phys. Rev. A 88 062328
[22] Macchiavello C and Palma G M 2002 Phys. Rev. A 65 050301
[23] Caruso F, Giovannetti V, Lupo C and Mancini S 2014 Rev. Mod. Phys. 86 1203
[24] Addis C, Karpat G, Macchiavello C and Maniscalco S 2016 Phys. Rev. A 94 032121
[25] Hu M L and Zhou W 2019 Laser Phys. Lett. 16 045201
[26] Hu M L and Fan H 2020 Sci. China-Phys. Mech. Astron. 63 230322
[27] Hu M L, Zhang Y H and Fan H 2021 Chin. Phys. B 30 030308
[28] Xie Y X and Qin Z Y 2020 Quantum Inf. Process. 19 375
[29] Wang Z Y and Qin Z Y 2020 Laser Phys. 30 055201
[30] Hu M L and Wang H F 2020 Ann. Phys. (Berlin) 532 1900378
[31] Karpat G 2018 Can. J. Phys. 96 700
[32] Wootters W K 1998 Phys. Rev. Lett. 80 2245
[33] Carvalho A R R, Mintert F and Buchleitner A 2004 Phys. Rev. Lett. 93 230501
[34] Abliz A, Gao H J, Xie X C, Wu Y S and Liu W M 2006 Phys. Rev. A 74 052105
[35] Lee B, Witzel W M and Sarma S D 2008 Phys. Rev. Lett. 100 160505
[36] Hu M L and Fan H 2012 Ann. Phys. (N.Y.) 327 851
[37] Życzkowski K, Horodecki P, Sanpera A and Lewenstein M 1998 Phys. Rev. A 58 883
[38] Vidal G and Werner R F 2002 Phys. Rev. A 65 032314
[39] Mehta M L 2004 Random Matrices, 3rd edn. (Amsterdam:Elsevier)
[1] Unified entropy entanglement with tighter constraints on multipartite systems
Qi Sun(孙琪), Tao Li(李陶), Zhi-Xiang Jin(靳志祥), and Deng-Feng Liang(梁登峰). Chin. Phys. B, 2023, 32(3): 030304.
[2] Entanglement and thermalization in the extended Bose-Hubbard model after a quantum quench: A correlation analysis
Xiao-Qiang Su(苏晓强), Zong-Ju Xu(许宗菊), and You-Quan Zhao(赵有权). Chin. Phys. B, 2023, 32(2): 020506.
[3] Transformation relation between coherence and entanglement for two-qubit states
Qing-Yun Zhou(周晴云), Xiao-Gang Fan(范小刚), Fa Zhao(赵发), Dong Wang(王栋), and Liu Ye(叶柳). Chin. Phys. B, 2023, 32(1): 010304.
[4] Nonreciprocal coupling induced entanglement enhancement in a double-cavity optomechanical system
Yuan-Yuan Liu(刘元元), Zhi-Ming Zhang(张智明), Jun-Hao Liu(刘军浩), Jin-Dong Wang(王金东), and Ya-Fei Yu(於亚飞). Chin. Phys. B, 2022, 31(9): 094203.
[5] Characterizing entanglement in non-Hermitian chaotic systems via out-of-time ordered correlators
Kai-Qian Huang(黄恺芊), Wei-Lin Li(李蔚琳), Wen-Lei Zhao(赵文垒), and Zhi Li(李志). Chin. Phys. B, 2022, 31(9): 090301.
[6] Direct measurement of two-qubit phononic entangled states via optomechanical interactions
A-Peng Liu(刘阿鹏), Liu-Yong Cheng(程留永), Qi Guo(郭奇), Shi-Lei Su(苏石磊), Hong-Fu Wang(王洪福), and Shou Zhang(张寿). Chin. Phys. B, 2022, 31(8): 080307.
[7] Purification in entanglement distribution with deep quantum neural network
Jin Xu(徐瑾), Xiaoguang Chen(陈晓光), Rong Zhang(张蓉), and Hanwei Xiao(肖晗微). Chin. Phys. B, 2022, 31(8): 080304.
[8] Self-error-rejecting multipartite entanglement purification for electron systems assisted by quantum-dot spins in optical microcavities
Yong-Ting Liu(刘永婷), Yi-Ming Wu(吴一鸣), and Fang-Fang Du(杜芳芳). Chin. Phys. B, 2022, 31(5): 050303.
[9] Effects of colored noise on the dynamics of quantum entanglement of a one-parameter qubit—qutrit system
Odette Melachio Tiokang, Fridolin Nya Tchangnwa, Jaures Diffo Tchinda,Arthur Tsamouo Tsokeng, and Martin Tchoffo. Chin. Phys. B, 2022, 31(5): 050306.
[10] Entanglement spectrum of non-Abelian anyons
Ying-Hai Wu(吴英海). Chin. Phys. B, 2022, 31(3): 037302.
[11] Probabilistic resumable quantum teleportation in high dimensions
Xiang Chen(陈想), Jin-Hua Zhang(张晋华), and Fu-Lin Zhang(张福林). Chin. Phys. B, 2022, 31(3): 030302.
[12] Tetrapartite entanglement measures of generalized GHZ state in the noninertial frames
Qian Dong(董茜), R. Santana Carrillo, Guo-Hua Sun(孙国华), and Shi-Hai Dong(董世海). Chin. Phys. B, 2022, 31(3): 030303.
[13] Bright 547-dimensional Hilbert-space entangled resource in 28-pair modes biphoton frequency comb from a reconfigurable silicon microring resonator
Qilin Zheng(郑骑林), Jiacheng Liu(刘嘉成), Chao Wu(吴超), Shichuan Xue(薛诗川), Pingyu Zhu(朱枰谕), Yang Wang(王洋), Xinyao Yu(于馨瑶), Miaomiao Yu(余苗苗), Mingtang Deng(邓明堂), Junjie Wu(吴俊杰), and Ping Xu(徐平). Chin. Phys. B, 2022, 31(2): 024206.
[14] Time evolution law of a two-mode squeezed light field passing through twin diffusion channels
Hai-Jun Yu(余海军) and Hong-Yi Fan(范洪义). Chin. Phys. B, 2022, 31(2): 020301.
[15] Channel parameters-independent multi-hop nondestructive teleportation
Hua-Yang Li(李华阳), Yu-Zhen Wei(魏玉震), Yi Ding(丁祎), and Min Jiang(姜敏). Chin. Phys. B, 2022, 31(2): 020302.
No Suggested Reading articles found!