Abstract We present a self-error-rejecting multipartite entanglement purification protocol (MEPP) for N-electron-spin entangled states, resorting to the single-side cavity-spin-coupling system. Our MEPP has a high efficiency containing two steps. One is to obtain high-fidelity N-electron-spin entangled systems with error-heralded parity-check devices (PCDs) in the same parity-mode outcome of three electron-spin pairs, as well as M-electron-spin entangled subsystems (2≤M <N) in the different parity-mode outcomes of those. The other is to regain the N-electron-spin entangled systems from M-electron-spin entangled states utilizing entanglement link. Moreover, the quantum circuits of PCDs make our MEPP works faithfully, due to the practical photon-scattering deviations from the finite side leakage of the microcavity, and the limited coupling between a quantum dot and a cavity mode, converted into a failed detection in a heralded way.
Fund: Project supported in part by the National Natural Science Foundation of China (Grant No.61901420),the Shanxi Provincial Science Foundation for Youths (Grant No.201901D211235),and the Scientific and Technological Innovation Program of Higher Education Institutions of Shanxi Province,China (Grant No.2019L0507).
Yong-Ting Liu(刘永婷), Yi-Ming Wu(吴一鸣), and Fang-Fang Du(杜芳芳) Self-error-rejecting multipartite entanglement purification for electron systems assisted by quantum-dot spins in optical microcavities 2022 Chin. Phys. B 31 050303
[1] Nielsen M A and Chuang I 2002 Am. J. Phys. 70 558 [2] Cao H, Ma W P, Liu G, Lü L D and Xue Z Y 2020 Chin. Phys. Lett.37 050303 [3] Ke Z J, Wang Y T, Yu S, Liu W, Meng Y, Li Z P, Wang H, Li Q, Xu J S, Xiao Y, Tang J S, Li C F and Guo G C 2020 Chin. Phys. B29 080301 [4] Yang L, Liu Y C and Li Y S 2020 Chin. Phys. B29 060301 [5] Ekert A K 1991 Phys. Rev. Lett.67 661 [6] Zhao Y B, Zhang W L, Wang D, Song X T, Zhou L J and Ding C B 2019 Chin. Phys. B28 104203 [7] Cui Z X, Zhong W, Zhou L and Sheng Y B 2019 Sci. China Phys. Mech. Astron.62 110311 [8] Li J J, Wang Y, Li H W and Bao W S 2020 Chin. Phys. B29 030303 [9] Li X, Yuan H W, Zhang C M and Wang Q 2020 Chin. Phys. B29 070303 [10] Chen X T, Zhang L P, Chang S K, Zhang H and Hu L Y 2021 Chin. Phys. B30 060304 [11] Long G L and Liu X S 2002 Phys. Rev. A65 032302 [12] Zhang W, Ding D S, Sheng Y B, Zhou L, Shi B S and Guo G C 2017 Phys. Rev. Lett.118 220501 [13] Zhu F, Zhang W, Sheng Y B and Huang Y D 2017 Sci. Bull.62 1519 [14] Gao Z K, Li T and Li Z H 2019 Europhys. Lett.125 40004 [15] Li T and Long G L 2020 New J. Phys.22 063017 [16] Qi Z T, Li Y H, Huang Y W, Feng J, Zheng Y L and Chen X F 2021 Light Sci. Appl.10 183 [17] Long G L and Zhang H R 2021 Sci. Bull.66 1267 [18] Sheng Y B, Zhou L and Long G L 2021 Sci. Bull. 11 002 [19] Liu X, Li Z J, Luo D, Huang C F, Ma D, Geng M M, Wang J W, Zhang Z R and Wei K J 2021 Sci. China Phys. Mech. Astron64 120311 [20] Hillery M, Bužek V and Berthiaume A 1999 Phys. Rev. A59 1829 [21] Luo G F, Zhou R G and Hu W W 2019 Chin. Phys. B28 040302 [22] Gao Z K, Li T and Li Z H 2020 Sci. China Phys. Mech. Astron.63 120311 [23] Zad H A 2016 Chin. Phys. Lett.33 090302 [24] Li T, Wang Z K and Xia K Y 2020 Opt. Express28 1316 [25] Zhang W and Han Z F 2019 Acta Phys. Sin. 68 070301 (in Chinese) [26] Luo J W, Wu D W, Li X, Zhu H N and Wei T L 2019 Acta Phys. Sin.68 064204 (in Chinese) [27] Briegel H J, Dür W, Cirac J I and Zoller P 1998 Phys. Rev. Lett.81 5932 [28] Li T, Yang G J and Deng F G 2016 Phys. Rev. A93 012302 [29] Li Y, Ye X J and Chen J L 2016 Chin. Phys. Lett.33 080301 [30] Kalb N, Reiserer A A, Humphreys P C, Bakermans J J W, Kamerling S J, Nickerson N H, Benjamin S C, Twitchen D J, Markham M and Hanson R 2017 Science356 928 [31] Wang G Y and Long G L 2019 Sci. China Phys. Mech. Astron.63 220311 [32] Wang G Y, Ai Q, Deng F G and Ren B C 2020 Opt. Express13 18693 [33] Bennett C H, Brassard G, Popescu S, Schumacher B, Smolin J A and Wootters W K 1996 Phys. Rev. Lett.76 722 [34] Deutsch D, Ekert A, Jozsa R, Macchiavello C, Popescu S and Sanpera A 1996 Phys. Rev. Lett.77 2818 [35] Pan J W, Simon C, Brukner č and Zeilinger A 2001 Nature410 1067 [36] Sheng Y B, Deng F G and Zhou H Y 2008 Phys. Rev. A77 059902 [37] Zhou L, Zhong W and Sheng Y B 2020 Opt. Express28 2291 [38] Hu X M, Huang C X, Sheng Y B, Zhou L, Liu B H, Guo Y, Zhang C, Xing W B, Huang Y F, Li C F and Guo G C 2021 Phys. Rev. Lett.126 010503 [39] Riera S F, Sekatski P, Pirker A and Dür W 2021 Phys. Rev. Lett.127 040502 [40] Ecker S, Sohr P, Bulla L, Huber M, Bohmann M and Ursin R 2021 Phys. Rev. Lett.127 040506 [41] Sheng Y B and Deng F G 2010 Phys. Rev. A81 032307 [42] Sheng Y B and Deng F G 2010 Phys. Rev. A82 044305 [43] Ren B C and Deng F G 2013 Laser Phys. Lett.10 115201 [44] Ren B C, Du F F and Deng F G 2014 Phys. Rev. A90 052309 [45] Wang G Y, Li T, Ai Q, Alsaedi A, Hayat T and Deng F G 2018 Phys. Rev. Appl.10 054058 [46] Du F F, Liu Y T, Shi Z R, Liang Y X, Tang J and Liu J 2019 Opt. Express27 27046 [47] Wang P, Yu C Q, Wang Z X, Yuan R Y, Du F F and Ren B C 2022 Front. Phys.17 31501 [48] Murao M, Plenio M B, Popescu S, Vedral V and Knight P L 1998 Phys. Rev. A 57 R4075 [49] Cheong Y W, Lee S W, Lee J and Lee H W 2007 Phys. Rev. A76 042314 [50] Sheng Y B, Deng F G, Zhao B K, Wang T J and Zhou H Y 2009 Eur. Phys. J. D55 235 [51] Deng F G 2011 Phys. Rev. A84 052312 [52] Sheng Y B, Deng F G and Zhou H Y 2009 Phys. Rev. A 373 1823 [53] Reithmaier J P, Sek G, Löffler A, Hofmann C, Kuhn S, Reitzenstein S, Keldysh L V, Kulakovskii V D, Reinecke T L and Forchel A 2004 Nature432 197 [54] Veldhorst M, Hwang J C C, Yang C H, Leenstra A W, de Ronde B, Dehollain J P, Muhonen J T, Hudson F E, Itoh K M, Morello A and Dzurak A S 2014 Nat. Nanotechnol.9 981 [55] Pursley B C, Carter S G, Yakes M K, Bracker A S and Gammon D 2018 Nat. Commun.9 115 [56] Berezovsky J, Mikkelsen M H, Stoltz N G, Coldren L A and Awschalom D D 2008 Science320 349 [57] Abe E, Wu H, Ardavan A and Morton J J L 2011 Appl. Phys. Lett.98 251108 [58] Lagoudakis K G, Fischer K, Sarmiento T, Majumdar A, Rundquist A, Lu J, Bajcsy M and Vučković J 2013 New J. Phys.15 113056 [59] Hu C Y, Munro W J, O'Brien J L and Rarity J G 2009 Phys. Rev. B80 205326 [60] Wang C, Zhang Y and Jin G S 2011 Phys. Rev. A84 032307 [61] Hu C Y, Young A, O'Brien J L, Munro W J and Rarity J G 2008 Phys. Rev. B78 085307 [62] An J H, Feng M and Oh C H 2009 Phys. Rev. A79 032303 [63] Wang T J, Song S Y and Long G L 2012 Phys. Rev. A85 062311 [64] Li T and Deng F G 2016 Phys. Rev. A94 062310 [65] Wei H R, Zheng Y B, Hua M and Xu G F 2020 Appl. Phys. Express13 082007 [66] Han Y H, Cao C, Fan L and Zhang R 2021 Opt. Express29 20045 [67] Somaschi N, Giesz V, De Santis L, Loredo J C, Almeida M P, Hornecker G, Portalupi S L, Grange T, Antón C, Demory J, Gómez C, Sagnes I, Lanzillotti-Kimura N D, Lemaítre A, Auffeves A, White A G, Lanco L and Senellart P 2016 Nat. Photon.10 340
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.