Please wait a minute...
Chin. Phys. B, 2022, Vol. 31(5): 050306    DOI: 10.1088/1674-1056/ac2f36
GENERAL Prev   Next  

Effects of colored noise on the dynamics of quantum entanglement of a one-parameter qubit—qutrit system

Odette Melachio Tiokang1,2, Fridolin Nya Tchangnwa2, Jaures Diffo Tchinda2, Arthur Tsamouo Tsokeng1, and Martin Tchoffo1,3,†
1 Research Unit of Condensed Matter, Electronic and Signal Processing, Department of Physics, Dschang School of Sciences and Technology, University of Dschang, PO Box:67 Dschang, Cameroon;
2 Material Science Research Group, Physics Laboratory, Department of Physics, Post Graduate School, University of Maroua, PO Box:814 Maroua, Cameroon;
3 Centre d'Etudes et de Recherches en Agronomie et en Biodiversite, Faculte d'Agronomie et des Sciences Agricoles, Universite de Dschang, Cameroun
Abstract  We analyzed the effect of colored noise on the negativity dynamics of a hybrid system consisting of a qubit-qutrit and not interacting, prepared from the start in an entangled one-parameter state and acting with noise in local and non-local environments. In this pink and brown noise we investigated two different situations: in the first situation, the noise is produced by a bistable oscillator with an unknown exchange rate; however, in the second situation, the noise is generated by a set of bistable oscillators. We found that entanglement decreases with time to zero, and undergoes the phenomenon of sudden death and rebirth. The pink noise is more prone to entanglement than the brown noise and the non-local environment is more prone to entanglement than the local one. When the number of fluctuators is increased, entanglement decays faster and finally, for certain parameters of the initial state, the subsystems are not affected by the noise.
Keywords:  entanglement      hybrid system      qutrit      colored noise  
Received:  18 June 2021      Revised:  12 September 2021      Accepted manuscript online: 
PACS:  03.67.Mn (Entanglement measures, witnesses, and other characterizations)  
Corresponding Authors:  Martin Tchoffo,     E-mail:
About author:  2021-10-13

Cite this article: 

Odette Melachio Tiokang, Fridolin Nya Tchangnwa, Jaures Diffo Tchinda,Arthur Tsamouo Tsokeng, and Martin Tchoffo Effects of colored noise on the dynamics of quantum entanglement of a one-parameter qubit—qutrit system 2022 Chin. Phys. B 31 050306

[1] Schrodinger E 1935Naturwissenschaften 23 844
[2] Zhang S L, Guo J S, Shi J H and Zou X B 2016Chin. Phys. Lett. 33 070303
[3] Tan J T, Luo Y R, Zhou Z and Hai W H 2016Chin. Phys. Lett. 33 070302
[4] Benedetti C, Buscemi F, Bordone P and Paris M G 2013Phys. Rev. A 87 052328
[5] Zhang S L, Jin C H, Shi J H, Guo J S, Zou X B and Guo G C 2017Chin. Phys. Lett. 34 040302
[6] Zhang S L, Jin C H, Guo J S, Shi J H, Zou X B and Guo G C 2016Chin. Phys. Lett. 33 120302
[7] Yu T and Eberly J H 2009Science 323 598
[8] Giulini D 1996Decoherence and the Appearance of a Classical World in Quantum Theory (Springer) pp. 187-222
[9] Genkin M 2017Dynamical Properties of a Living Nematic (Doctoral dissertation, Northwestern University)
[10] Hu M L and Fan H 2012Ann. Phys. 327 851
[11] Maniscalco S, Olivares S and Paris M G 2007Phys. Rev. A 75 062119
[12] Vasile R, Giorda P, Olivares S, Paris M G and Maniscalco S 2010Phys. Rev. A 82 012313
[13] Vasile R, Olivares S, Paris M A and Maniscalco S 2011Phys. Rev. A 83 042321
[14] Brida G, Degiovanni I P, Florio A, Genovese M, Giorda P, Meda A and Shurupov A 2010Phys. Rev. Lett. 104 100501
[15] Ferraro A and Paris M G 2012Phys. Rev. Lett. 108 260403
[16] Warren W S, Gershenfeld N and Chuang I 1997Science 277 1688
[17] Filgueiras J G, Maciel T O, Auccaise R E, Vianna R O, Sarthour R S and Oliveira I S 2012Quantum Inf. Process. 11 1883
[18] Buscemi F, Bordone P and Bertoni A 2010Phys. Rev. B 81 045312
[19] Buscemi F 2011Phys. Rev. A 83 012302
[20] Sarovar M, Ishizaki A, Fleming G R and Whaley K B 2010Nat. Phys. 6 462
[21] Fassioli F and Olaya-Castro A 2010New J. Phys. 12 085006
[22] Yu T and Eberly J H 2004Phys. Rev. Lett. 93 140404
[23] Yang Q, Yang M, Li D C and Cao Z L 2012Int. J. Theor. Phys. 51 2160
[24] Cao X F and Zheng H 2009Eur. Phys. J. B 68 209
[25] Mazzola L, Piilo J and Maniscalco S 2010Phys. Rev. Lett. 104 200401
[26] Ma J, Sun Z, Wang X and Nori F 2012Phys. Rev. A 85 062323
[27] Bellomo B, Franco R L and Compagno G 2007Phys. Rev. Lett. 99 160502
[28] Xu J 2020Chin. Phys. B 29 010301
[29] Jin Z X and Qiao C F 2020Chin. Phys. B 29 020305
[30] Guo M L, Li B, Wang Z X and Fei S M 2020Chin. Phys. B 29 070304
[31] Golkar S, Tavassoly M K and Nourmandipour A 2020Chin. Phys. B 29 050304
[32] Liu Y, Liang S L, Jin G R, Yu Y B, Lan J Y, He X B and Guo K X 2020Chin. Phys. B 29 050301
[33] Zhang S X, Liu T H, Cao S, Liu Y T, Geng S B and Lian Y J 2020Chin. Phys. B 29 050402
[34] Nielsen M A and Chuang I L 2000Quantum Computing and Quantum Information (Cambridge: Cambridge University Press)
[35] Horodecki R, Horodecki P, Horodecki M and Horodecki K 2009Rev. Mod. Phys. 81 865
[36] Bennet C H and Wiesner S J 1992Phys. Rev. Lett. 69 2881
[37] Byers N and Yang C N 1961Phys. Rev. Lett. 7 46
[38] Franco R L and Compagno G 2018Phys. Rev. Lett. 120 240403
[39] Johnson J B 1925Phys. Rev. 26 71
[40] Kakuyanagi K, Meno T, Saito S, Nakano H, Semba K, Takayanagi H, Deppe F and Shnirman A 2007Phys. Rev. Lett. 98 047004
[41] Burkard G 2009Phys. Rev. B 79 125317
[42] Benedetti C 2015Decoherence, non-Markovianity and quantum estimation in qubit systems subject to classical noise
[43] Weissman M B 1988Rev. Mod. Phys. 60 537
[44] Galperin Y M, Altshuler B L, Bergli J and Shantsev D V 2006Phys. Rev. Lett. 96 097009
[45] Benedetti C, Buscemi F, Bordone P and Paris M G 2013Phys. Rev. A 87 052328
[46] Kenfack L T, Tchoffo M and Fai L C 2019Int. J. Theor. Phys. 58 4278
[47] Ludviksson A, Kree R and Schmid A 1984Phys. Rev. Lett. 52 950
[48] Kogan S M and Nagaev K E 1984Solid State Commun. 49 387
[49] Waldherr G, Wang Y, Zaiser S, et al. 2014Nature 506 204
[50] Karpat G and Gedik Z 2011Phys. Lett. A 375 4166
[51] Karpat G and Gedik Z 2013Physica Scripta T153 014036
[52] Basit A, Ali H, Badshah F and Ge G Q 2017Commun. Theor. Phys. 68 29
[53] Zhou D, Lang A and Joynt R 2010Quantum Inf. Process. 9 727
[54] Abel B and Marquardt F 2008Phys. Rev. B 78 201302
[55] Paladino E, D'arrigo A, Mastellone A and Falci G 2011New J. Phys. 13 093037
[56] Bellomo B, Compagno G, D'Arrigo A, Falci G, Franco R L and Paladino E 2010Phys. Rev. A 81 062309
[57] Kuopanportti P, Möttönen M, Bergholm V, Saira O P, Zhang J and Whaley K B 2008Phys. Rev. A 77 032334
[58] Benedetti C, Buscemi F, Bordone P and Paris M G 2012Int. J. Quantum Inf. 10 1241005
[59] Vidal G and Werner R F 2002Phys. Rev. A 65 032314
[60] Buscemi F and Bordone P 2011Phys. Rev. A 84 022303
[61] Arjmandi M B 2019Can. J. Phys. 97 42
[62] Yang Q, Yang M, Li D C and Cao Z L 2012Int. J. Theor. Phys. 51 2160
[63] Mazzola L, Maniscalco S, Piilo J, Suominen K A and Garraway B M 2009Phys. Rev. A 79 042302
[64] Tchoffo M, Tsokeng A T, Tiokang O M, Nganyo P N and Fai L C 2019Phys. Lett. A 383 1856
[1] Tunable phonon-atom interaction in a hybrid optomechanical system
Yao Li(李耀), Chuang Li(李闯), Jiandong Zhang(张建东),Ying Dong(董莹), and Huizhu Hu(胡慧珠). Chin. Phys. B, 2023, 32(4): 044213.
[2] Fast population transfer with a superconducting qutrit via non-Hermitian shortcut to adiabaticity
Xin-Ping Dong(董新平), Zhi-Bo Feng(冯志波), Xiao-Jing Lu(路晓静), Ming Li(李明), and Zheng-Yin Zhao(赵正印). Chin. Phys. B, 2023, 32(3): 034201.
[3] Unified entropy entanglement with tighter constraints on multipartite systems
Qi Sun(孙琪), Tao Li(李陶), Zhi-Xiang Jin(靳志祥), and Deng-Feng Liang(梁登峰). Chin. Phys. B, 2023, 32(3): 030304.
[4] Realization of the iSWAP-like gate among the superconducting qutrits
Peng Xu(许鹏), Ran Zhang(张然), and Sheng-Mei Zhao(赵生妹). Chin. Phys. B, 2023, 32(2): 020306.
[5] Entanglement and thermalization in the extended Bose-Hubbard model after a quantum quench: A correlation analysis
Xiao-Qiang Su(苏晓强), Zong-Ju Xu(许宗菊), and You-Quan Zhao(赵有权). Chin. Phys. B, 2023, 32(2): 020506.
[6] Transformation relation between coherence and entanglement for two-qubit states
Qing-Yun Zhou(周晴云), Xiao-Gang Fan(范小刚), Fa Zhao(赵发), Dong Wang(王栋), and Liu Ye(叶柳). Chin. Phys. B, 2023, 32(1): 010304.
[7] Nonreciprocal coupling induced entanglement enhancement in a double-cavity optomechanical system
Yuan-Yuan Liu(刘元元), Zhi-Ming Zhang(张智明), Jun-Hao Liu(刘军浩), Jin-Dong Wang(王金东), and Ya-Fei Yu(於亚飞). Chin. Phys. B, 2022, 31(9): 094203.
[8] Characterizing entanglement in non-Hermitian chaotic systems via out-of-time ordered correlators
Kai-Qian Huang(黄恺芊), Wei-Lin Li(李蔚琳), Wen-Lei Zhao(赵文垒), and Zhi Li(李志). Chin. Phys. B, 2022, 31(9): 090301.
[9] Purification in entanglement distribution with deep quantum neural network
Jin Xu(徐瑾), Xiaoguang Chen(陈晓光), Rong Zhang(张蓉), and Hanwei Xiao(肖晗微). Chin. Phys. B, 2022, 31(8): 080304.
[10] Direct measurement of two-qubit phononic entangled states via optomechanical interactions
A-Peng Liu(刘阿鹏), Liu-Yong Cheng(程留永), Qi Guo(郭奇), Shi-Lei Su(苏石磊), Hong-Fu Wang(王洪福), and Shou Zhang(张寿). Chin. Phys. B, 2022, 31(8): 080307.
[11] Robustness of two-qubit and three-qubit states in correlated quantum channels
Zhan-Yun Wang(王展云), Feng-Lin Wu(吴风霖), Zhen-Yu Peng(彭振宇), and Si-Yuan Liu(刘思远). Chin. Phys. B, 2022, 31(7): 070302.
[12] Self-error-rejecting multipartite entanglement purification for electron systems assisted by quantum-dot spins in optical microcavities
Yong-Ting Liu(刘永婷), Yi-Ming Wu(吴一鸣), and Fang-Fang Du(杜芳芳). Chin. Phys. B, 2022, 31(5): 050303.
[13] Nano-friction phenomenon of Frenkel—Kontorova model under Gaussian colored noise
Yi-Wei Li(李毅伟), Peng-Fei Xu(许鹏飞), and Yong-Ge Yang(杨勇歌). Chin. Phys. B, 2022, 31(5): 050501.
[14] Probabilistic resumable quantum teleportation in high dimensions
Xiang Chen(陈想), Jin-Hua Zhang(张晋华), and Fu-Lin Zhang(张福林). Chin. Phys. B, 2022, 31(3): 030302.
[15] Tetrapartite entanglement measures of generalized GHZ state in the noninertial frames
Qian Dong(董茜), R. Santana Carrillo, Guo-Hua Sun(孙国华), and Shi-Hai Dong(董世海). Chin. Phys. B, 2022, 31(3): 030303.
No Suggested Reading articles found!