|
|
Quantum state transfer between atomic ensembles trapped in separate cavities via adiabatic passage |
Zhang Chun-Ling (张春玲)a, Chen Mei-Feng (陈美锋)b |
a Department of Electronic and Information Engineering, Sunshine College Fuzhou University, Fuzhou 350002, China; b Laboratory of Quantum Optics, Department of Physics, Fuzhou University, Fuzhou 350002, China |
|
|
Abstract We propose a new approach for quantum state transfer (QST) between atomic ensembles separately trapped in two distant cavities connected by an optical fiber via adiabatic passage. The three-level Λ-type atoms in each ensemble dispersively interact with the nonresonant classical field and cavity mode. By choosing appropriate parameters of the system, the effective Hamiltonian describes two atomic ensembles interacting with “the same cavity mode” and has a dark state. Consequently, the QST between atomic ensembles can be implemented via adiabatic passage. Numerical calculations show that the scheme is robust against moderate fluctuations of the experimental parameters. In addition, the effect of decoherence can be suppressed effectively. The idea provides a scalable way to an atomic-ensemble-based quantum network, which may be reachable with currently available technology.
|
Received: 14 November 2014
Revised: 12 December 2014
Accepted manuscript online:
|
PACS:
|
03.67.Bg
|
(Entanglement production and manipulation)
|
|
42.50.Dv
|
(Quantum state engineering and measurements)
|
|
42.50.Pq
|
(Cavity quantum electrodynamics; micromasers)
|
|
Fund: Project supported by the Funding (type B) from the Fujian Education Department, China (Grant No. JB13261). |
Corresponding Authors:
Zhang Chun-Ling
E-mail: mzhangchunling@163.com
|
Cite this article:
Zhang Chun-Ling (张春玲), Chen Mei-Feng (陈美锋) Quantum state transfer between atomic ensembles trapped in separate cavities via adiabatic passage 2015 Chin. Phys. B 24 070310
|
[1] |
Lloyd S 1993 Science 261 1569
|
[2] |
Bennett C H, Brassard G, Crépeau C, Jozsa R, Peres A and Wootters W K 1993 Phys. Rev. Lett. 70 1895
|
[3] |
Gisin N, Ribordy G, Tittel W and Zbinden H 2002 Rev. Mod. Phys. 74 145
|
[4] |
Ekert A K 1991 Phys. Rev. Lett. 67 661
|
[5] |
Karlsson A and Bourennane M 1998 Phys. Rev. A 58 4394
|
[6] |
Brune M, Hagley E, Dreyer J, Maitre X, Maali A, Wunderlich C, Raimond J M and Haroche S 1996 Phys. Rev. Lett. 77 4887
|
[7] |
Turchette Q A, Hood C J, Lange W, Mabuchi H and Kimble H J 1995 Phys. Rev. Lett. 75 4710
|
[8] |
Mattle K, Weinfurter H, Kwiat P G and Zeilinger A 1996 Phys. Rev. Lett. 76 4656
|
[9] |
Bennett C H and Wiesner S J 1992 Phys. Rev. Lett. 69 2881
|
[10] |
Cirac J I, Zoller P, Kimble H J and Mabuchi H 1997 Phys. Rev. Lett. 78 3221
|
[11] |
Christandl M, Datta N, Ekert A and Landahl A J 2004 Phys. Rev. Lett. 92 187902
|
[12] |
Yao N Y, Jiang L, Gorshkov A V, Gong Z X, Zhai A, Duan L M and Lukin M D 2011 Phys. Rev. Lett. 106 040505
|
[13] |
Shi Z C, Xia Y, Song J and Song H S 2011 J. Opt. Soc. Am. B 28 2909
|
[14] |
Vitanov N V, Halfmann T, Shore B W and Bergmann K 2001 Annu. Rev. Phys. Chem. 52 763
|
[15] |
Bergmann K, Theuer H and Shore B W 1998 Rev. Mod. Phys. 70 1003
|
[16] |
Vitanov N V, Suominen K A and Shore B W 1999 J. Phys. B 32 4535
|
[17] |
Lacour X, Sangouard N, Guérin S and Jauslin H R 2006 Phys. Rev. A 73 042321
|
[18] |
Talab M A, Guérin S and Jauslin H R 2005 Phys. Rev. A 72 012339
|
[19] |
Talab M A, Guérin S, Sangouard N and Jauslin H R 2005 Phys. Rev. A 71 023805
|
[20] |
Zheng A S, Liu L B and Chen H Y 2011 Chin. Phys. Lett. 28 080303
|
[21] |
Yang Z B, Wu H Z and Zheng S B 2010 Chin. Phys. B 19 094205
|
[22] |
Song J, Xia Y and Song H S 2010 Appl. Rev. Lett. 96 071102
|
[23] |
Serafini A, Mancini S and Bose S 2006 Phys. Rev. Lett. 96 010503
|
[24] |
Hammerer K, Sorensen A S and Polzik E S 2010 Rev. Mod. Phys. 82 1041
|
[25] |
Holstein T and Primakoff H 1940 Phys. Rev. 58 1098
|
[26] |
Kuklinski J R, Gaubatz U, Hioe F T and Bergmann K 1989 Phys. Rev. A 40 6741
|
[27] |
Shen L T, Wu H Z and Yang Z B 2012 Eur. Phys. J. D 66 123
|
[28] |
Zhang C L, Li W Z and Chen M F 2013 Opt. Commun. 311 301
|
[29] |
Lu M, Xia Y, Song J and An Z B 2013 J. Opt. Soc. Am. B 30 2142
|
[30] |
Boozer A D, Boca A, Miller R, Northup T E and Kimble H J 2006 Phys. Rev. Lett. 97 083602
|
[31] |
Boca A, Miller R, Birnbaum K M, Boozer A D, McKeever J and Kimble H J 2004 Phys. Rev. Lett. 93 233603
|
[32] |
McKeever J, Buck J R, Boozer A D, Kuzmich A, Nagerl H C, Stamper-Kurn D M and Kimble H J 2003 Phys. Rev. Lett. 90 133602
|
[33] |
Yin Z Q and Li F L 2007 Phys. Rev. A 75 012324
|
[34] |
Spillane S M, Kippenberg T J, Painter O J and Vahala K J 2003 Phys. Rev. Lett. 91 043902
|
[35] |
Yuan L B and Zhou L M 1998 Appl. Opt. 37 4168
|
[36] |
Dragone C, Henry C H, Kaminow I P and Kistler R C 1989 IEEE Photon. Technol. Lett. 1 241
|
[37] |
Duan L M, Lukin M, Cirac I and Zoller P 2001 Nature 414 413
|
[38] |
Reiter F and Sorensen A S 2012 Phys. Rev. A 85 032111
|
[39] |
Zheng S B 2012 Phys. Rev. A 86 013828
|
[40] |
Spillane S M, Kippenberg T J, Vahala K J, Goh K W, Wilcut E and Kimble H J 2005 Phys. Rev. A 71 013817
|
[41] |
Hartmann M J, Brandao F G S L and Plenio M B 2006 Nat. Phys. 2 849
|
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|