Please wait a minute...
Chin. Phys. B, 2015, Vol. 24(7): 070310    DOI: 10.1088/1674-1056/24/7/070310
GENERAL Prev   Next  

Quantum state transfer between atomic ensembles trapped in separate cavities via adiabatic passage

Zhang Chun-Ling (张春玲)a, Chen Mei-Feng (陈美锋)b
a Department of Electronic and Information Engineering, Sunshine College Fuzhou University, Fuzhou 350002, China;
b Laboratory of Quantum Optics, Department of Physics, Fuzhou University, Fuzhou 350002, China
Abstract  We propose a new approach for quantum state transfer (QST) between atomic ensembles separately trapped in two distant cavities connected by an optical fiber via adiabatic passage. The three-level Λ-type atoms in each ensemble dispersively interact with the nonresonant classical field and cavity mode. By choosing appropriate parameters of the system, the effective Hamiltonian describes two atomic ensembles interacting with “the same cavity mode” and has a dark state. Consequently, the QST between atomic ensembles can be implemented via adiabatic passage. Numerical calculations show that the scheme is robust against moderate fluctuations of the experimental parameters. In addition, the effect of decoherence can be suppressed effectively. The idea provides a scalable way to an atomic-ensemble-based quantum network, which may be reachable with currently available technology.
Keywords:  quantum state transfer      atomic ensemble      cavity QED  
Received:  14 November 2014      Revised:  12 December 2014      Accepted manuscript online: 
PACS:  03.67.Bg (Entanglement production and manipulation)  
  42.50.Dv (Quantum state engineering and measurements)  
  42.50.Pq (Cavity quantum electrodynamics; micromasers)  
Fund: Project supported by the Funding (type B) from the Fujian Education Department, China (Grant No. JB13261).
Corresponding Authors:  Zhang Chun-Ling     E-mail:  mzhangchunling@163.com

Cite this article: 

Zhang Chun-Ling (张春玲), Chen Mei-Feng (陈美锋) Quantum state transfer between atomic ensembles trapped in separate cavities via adiabatic passage 2015 Chin. Phys. B 24 070310

[1] Lloyd S 1993 Science 261 1569
[2] Bennett C H, Brassard G, Crépeau C, Jozsa R, Peres A and Wootters W K 1993 Phys. Rev. Lett. 70 1895
[3] Gisin N, Ribordy G, Tittel W and Zbinden H 2002 Rev. Mod. Phys. 74 145
[4] Ekert A K 1991 Phys. Rev. Lett. 67 661
[5] Karlsson A and Bourennane M 1998 Phys. Rev. A 58 4394
[6] Brune M, Hagley E, Dreyer J, Maitre X, Maali A, Wunderlich C, Raimond J M and Haroche S 1996 Phys. Rev. Lett. 77 4887
[7] Turchette Q A, Hood C J, Lange W, Mabuchi H and Kimble H J 1995 Phys. Rev. Lett. 75 4710
[8] Mattle K, Weinfurter H, Kwiat P G and Zeilinger A 1996 Phys. Rev. Lett. 76 4656
[9] Bennett C H and Wiesner S J 1992 Phys. Rev. Lett. 69 2881
[10] Cirac J I, Zoller P, Kimble H J and Mabuchi H 1997 Phys. Rev. Lett. 78 3221
[11] Christandl M, Datta N, Ekert A and Landahl A J 2004 Phys. Rev. Lett. 92 187902
[12] Yao N Y, Jiang L, Gorshkov A V, Gong Z X, Zhai A, Duan L M and Lukin M D 2011 Phys. Rev. Lett. 106 040505
[13] Shi Z C, Xia Y, Song J and Song H S 2011 J. Opt. Soc. Am. B 28 2909
[14] Vitanov N V, Halfmann T, Shore B W and Bergmann K 2001 Annu. Rev. Phys. Chem. 52 763
[15] Bergmann K, Theuer H and Shore B W 1998 Rev. Mod. Phys. 70 1003
[16] Vitanov N V, Suominen K A and Shore B W 1999 J. Phys. B 32 4535
[17] Lacour X, Sangouard N, Guérin S and Jauslin H R 2006 Phys. Rev. A 73 042321
[18] Talab M A, Guérin S and Jauslin H R 2005 Phys. Rev. A 72 012339
[19] Talab M A, Guérin S, Sangouard N and Jauslin H R 2005 Phys. Rev. A 71 023805
[20] Zheng A S, Liu L B and Chen H Y 2011 Chin. Phys. Lett. 28 080303
[21] Yang Z B, Wu H Z and Zheng S B 2010 Chin. Phys. B 19 094205
[22] Song J, Xia Y and Song H S 2010 Appl. Rev. Lett. 96 071102
[23] Serafini A, Mancini S and Bose S 2006 Phys. Rev. Lett. 96 010503
[24] Hammerer K, Sorensen A S and Polzik E S 2010 Rev. Mod. Phys. 82 1041
[25] Holstein T and Primakoff H 1940 Phys. Rev. 58 1098
[26] Kuklinski J R, Gaubatz U, Hioe F T and Bergmann K 1989 Phys. Rev. A 40 6741
[27] Shen L T, Wu H Z and Yang Z B 2012 Eur. Phys. J. D 66 123
[28] Zhang C L, Li W Z and Chen M F 2013 Opt. Commun. 311 301
[29] Lu M, Xia Y, Song J and An Z B 2013 J. Opt. Soc. Am. B 30 2142
[30] Boozer A D, Boca A, Miller R, Northup T E and Kimble H J 2006 Phys. Rev. Lett. 97 083602
[31] Boca A, Miller R, Birnbaum K M, Boozer A D, McKeever J and Kimble H J 2004 Phys. Rev. Lett. 93 233603
[32] McKeever J, Buck J R, Boozer A D, Kuzmich A, Nagerl H C, Stamper-Kurn D M and Kimble H J 2003 Phys. Rev. Lett. 90 133602
[33] Yin Z Q and Li F L 2007 Phys. Rev. A 75 012324
[34] Spillane S M, Kippenberg T J, Painter O J and Vahala K J 2003 Phys. Rev. Lett. 91 043902
[35] Yuan L B and Zhou L M 1998 Appl. Opt. 37 4168
[36] Dragone C, Henry C H, Kaminow I P and Kistler R C 1989 IEEE Photon. Technol. Lett. 1 241
[37] Duan L M, Lukin M, Cirac I and Zoller P 2001 Nature 414 413
[38] Reiter F and Sorensen A S 2012 Phys. Rev. A 85 032111
[39] Zheng S B 2012 Phys. Rev. A 86 013828
[40] Spillane S M, Kippenberg T J, Vahala K J, Goh K W, Wilcut E and Kimble H J 2005 Phys. Rev. A 71 013817
[41] Hartmann M J, Brandao F G S L and Plenio M B 2006 Nat. Phys. 2 849
[1] Controllable four-wave mixing response in a dual-cavity hybrid optomechanical system
Lei Shang(尚蕾), Bin Chen(陈彬), Li-Li Xing(邢丽丽), Jian-Bin Chen(陈建宾), Hai-Bin Xue(薛海斌), and Kang-Xian Guo(郭康贤). Chin. Phys. B, 2021, 30(5): 054209.
[2] Enhancement of multiatom non-classical correlations and quantum state transfer in atom-cavity-fiber system
Qi-Liang He(贺启亮), Jian Sun(孙剑), Xiao-Shu Song(宋晓书), and Yong-Jun Xiao(肖勇军). Chin. Phys. B, 2021, 30(1): 010305.
[3] Fast achievement of quantum state transfer and distributed quantum entanglement by dressed states
Liang Tian(田亮), Li-Li Sun(孙立莉), Xiao-Yu Zhu(朱小瑜), Xue-Ke Song(宋学科), Lei-Lei Yan(闫磊磊), Er-Jun Liang(梁二军), Shi-Lei Su(苏石磊), Mang Feng(冯芒). Chin. Phys. B, 2020, 29(5): 050306.
[4] Phase-modulated quadrature squeezing in two coupled cavities containing a two-level system
Hao-Zhen Li(李浩珍), Ran Zeng(曾然), Xue-Fang Zhou(周雪芳), Mei-Hua Bi(毕美华), Jing-Ping Xu(许静平), Ya-Ping Yang(羊亚平). Chin. Phys. B, 2020, 29(5): 050308.
[5] Cavity enhanced measurement of trap frequency in an optical dipole trap
Peng-Fei Yang(杨鹏飞), Hai He(贺海), Zhi-Hui Wang(王志辉), Xing Han(韩星), Gang Li(李刚), Peng-Fei Zhang(张鹏飞), Tian-Cai Zhang(张天才). Chin. Phys. B, 2019, 28(4): 043701.
[6] Quantum state transfer via a hybrid solid-optomechanical interface
Pei Pei(裴培), He-Fei Huang(黄鹤飞), Yan-Qing Guo(郭彦青), Xing-Yuan Zhang(张兴远), Jia-Feng Dai(戴佳峰). Chin. Phys. B, 2018, 27(2): 024203.
[7] Optomechanical state transfer between two distant membranes in the presence of non-Markovian environments
Jiong Cheng(程泂), Xian-Ting Liang(梁先庭), Wen-Zhao Zhang(张闻钊), Xiangmei Duan(段香梅). Chin. Phys. B, 2018, 27(12): 120302.
[8] Scheme for preparation of multi-partite entanglement of atomic ensembles
Peng Xue(薛鹏), Zhi-Hao Bian(边志浩). Chin. Phys. B, 2016, 25(8): 080305.
[9] Experimental study of the dependences of retrieval efficiencies on time delay between magneto-optical-trap being turned off and optical storage
Li-Rong Chen(陈力荣), Zhong-Xiao Xu(徐忠孝), Ping Li(李萍), Ya-Fei Wen(温亚飞), Wei-Qing Zeng(曾炜卿), Yue-Long Wu(武跃龙), Long Tian(田龙), Shu-Jing Li(李淑静), Hai Wang(王海). Chin. Phys. B, 2016, 25(2): 024203.
[10] Quantum information transfer between topological and conventional charge qubits
Jun Li(栗军) and Yan Zou(邹艳). Chin. Phys. B, 2016, 25(2): 027302.
[11] A novel scheme of hybrid entanglement swapping and teleportation using cavity QED in the small and large detuning regimes and quasi-Bell state measurement method
R Pakniat, M K Tavassoly, M H Zandi. Chin. Phys. B, 2016, 25(10): 100303.
[12] Photon bunching and anti-bunching with two dipole-coupled atoms in an optical cavity
Ya-Mei Zheng(郑雅梅), Chang-Sheng Hu(胡长生), Zhen-Biao Yang(杨贞标), Huai-Zhi Wu(吴怀志). Chin. Phys. B, 2016, 25(10): 104202.
[13] Vacuum induced transparency and slow light phenomena in a two-level atomic ensemble controlled by a cavity
Guo Yu-Jie (郭玉杰), Nie Wen-Jie (聂文杰). Chin. Phys. B, 2015, 24(9): 094205.
[14] High-dimensional quantum state transfer in a noisy network environment
Qin Wei (秦伟), Li Jun-Lin (李俊林), Long Gui-Lu (龙桂鲁). Chin. Phys. B, 2015, 24(4): 040305.
[15] Scheme for generating a cluster-type entangled squeezed vacuum state via cavity QED
Wen Jing-Ji (文晶姬), Yeon Kyu-Hwang, Wang Hong-Fu (王洪福), Zhang Shou (张寿). Chin. Phys. B, 2014, 23(4): 040301.
No Suggested Reading articles found!