Please wait a minute...
Chin. Phys. B, 2015, Vol. 24(5): 057702    DOI: 10.1088/1674-1056/24/5/057702
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES Prev   Next  

Threshold switching uniformity in In2Se3 nanowire-based phase change memory

Chen Jian (陈键)a b, Du Gang (杜刚)b, Liu Xiao-Yan (刘晓彦)b
a Shenzhen Graduate School, Peking University, Shenzhen 518055, China;
b Institute of Microelectronics, Peking University, Beijing 100871, China
Abstract  The uniformity of threshold voltage and threshold current in the In2Se3 nanowire-based phase change memory (PCM) devices is investigated. Based on the trap-limited transport model, amorphous layer thickness, trap density, and trap depth are considered to clarify their influences upon the threshold voltage and threshold current through simulations.
Keywords:  phase change memory      nanowire      trap-limited model      threshold voltage  
Received:  14 November 2014      Revised:  09 December 2014      Accepted manuscript online: 
PACS:  77.80.Fm (Switching phenomena)  
  85.30.-z (Semiconductor devices)  
  78.66.Jg (Amorphous semiconductors; glasses)  
  85.30.-z (Semiconductor devices)  
Fund: Project supported by the National Basic Research Program of China (Grant No. 2011CBA00604).
Corresponding Authors:  Liu Xiao-Yan     E-mail:  xyliu@ime.pku.edu.cn
About author:  77.80.Fm; 85.30.-z; 78.66.Jg; 85.30.-z

Cite this article: 

Chen Jian (陈键), Du Gang (杜刚), Liu Xiao-Yan (刘晓彦) Threshold switching uniformity in In2Se3 nanowire-based phase change memory 2015 Chin. Phys. B 24 057702

[1] Burr G W, Kurdi B N, Scott J C, Lam C H, Gopalakrishnan K and Shenoy R S 2008 IBM Journal of Research and Development 52 449
[2] Lam C H 2010 Solid-State and Integrated Circuit Technology, November 1-4, 2010, Shanghai, China, p. 1080
[3] Freitas R F and Wilcke W W 2008 IBM Journal of Research and Development 52 439
[4] Marinella M 2013 Aerospace Conference, March 2-9, 2013, Big Sky, USA, p. 1
[5] Burr G W, Breitwisch M J, Franceschini M, Garetto D, Gopalakrishnan K and Jackson B 2010 Journal of Vacuum Science & Technology 28 223
[6] Wong H S P, Raoux S, SangBum K, Jiale L, Reifenberg J P and Rajendran B 2010 IEEE Proc. 98 2201
[7] Lai S and Lowrey T 2001 Electron Devices Meeting, December 2-5, 2001, Washington, DC, USA, p. 36.5.1
[8] Raoux S, Burr G W, Breitwisch M J, Rettner C T, Chen Y C and Shelby R M 2008 IBM Journal of Research and Development 52 465
[9] Pirovano A, Lacaita A L, Benvenuti A, Pellizzer F, Hudgens S and Bez R 2003 Electron Devices Meeting, December 8-10, 2003, Washington, DC, USA, p. 29.6.1
[10] Russo U, Ielmini D, Redaelli A and Lacaita A L 2008 IEEE Trans. Electron Devices 55 506
[11] Redaelli A, Pirovano A, Pellizzer F, Lacaita A L, Ielmini D and Bez R 2004 IEEE Electron Dev. Lett. 25 684
[12] Redaelli A, Pirovano A, Benvenuti A and Lacaita A L 2008 J. Appl. Phys. 103 111101
[13] Youngdon C, Ickhyun S, Mu-Hui P, Hoeju C, Sanghoan C and Beakhyoung C 2012 Solid-State Circuits Conference Digest of Technical Papers, February 19-23, 2012, San Francisco, USA, p. 46
[14] Kang D H, Ahn D H, Kwon M H, Kwon H S, Kim K B and Lee K S 2004 Jpn. J. Appl. Phys. 43 5243
[15] Pirovano A, Lacaita A L, Benvenuti A, Pellizzer F and Bez R 2004 IEEE Trans. Electron Devices 51 452
[16] Ovshinsk Sr 1968 Phys. Rev. Lett. 21 1450
[17] Xuhui S, Bin Y, Ng G, Meyyappan M, Sanghyun J and Janes D B 2008 IEEE Trans. Electron Devices 55 3131
[18] Bin Y, Xuhui S, Sanghyun J, Janes D B and Meyyappan M 2008 IEEE Trans. Nanotechnol. 7 496
[19] Jie L, Bin Y and Anantram M P 2011 IEEE Electron Dev. Lett. 32 1340
[20] Bo J, Jungsik K, Daegun K, Meyyappan M and Jeong-Soo L 2013 13th IEEE Conference on Nanotechnology, Auguest 5-8, 2013, Beijing, China, p. 849
[21] Yu B, Ju S, Sun X, Ng G, Nguyen T D, Meyyappan M and Janes D B 2007 Appl. Phys. Lett. 91 133119
[22] Ielmini D and Zhang Y 2007 J. Appl. Phys. 102 054517
[23] Shih Y H, Lee M H, Breitwisch M, Cheek R, Wu J Y and Rajendran B 2009 Electron Devices Meeting, December 7-9, 2009, Baltimore, USA, p. 31.7.1
[24] SangBum K, Byoung-Jae B, Yuan Z, Jeyasingh R G D, Youngkuk K and In-Gyu B 2011 IEEE Trans. Electron Devices 58 1483
[25] Ielmini D and Zhang Y 2006 Electron Devices Meeting, December 11-13, 2006. San Francisco, USA, p. 1
[26] Jeyasingh R G D, Kuzum D and Wong H S P 2011 IEEE Trans. Electron Devices 58 4370
[1] Mechanical enhancement and weakening in Mo6S6 nanowire by twisting
Ke Xu(徐克), Yanwen Lin(林演文), Qiao Shi(石桥), Yuequn Fu(付越群), Yi Yang(杨毅),Zhisen Zhang(张志森), and Jianyang Wu(吴建洋). Chin. Phys. B, 2023, 32(4): 046204.
[2] Design and research of normally-off β-Ga2O3/4H-SiC heterojunction field effect transistor
Meixia Cheng(程梅霞), Suzhen Luan(栾苏珍), Hailin Wang(王海林), and Renxu Jia(贾仁需). Chin. Phys. B, 2023, 32(3): 037302.
[3] A simulation study of polarization characteristics of ultrathin CsPbBr3 nanowires with different cross-section shapes and sizes
Kang Yang(杨康), Huiqing Hu(胡回清), Jiaojiao Wang(王娇娇), Lingling Deng(邓玲玲), Yunqing Lu(陆云清), and Jin Wang(王瑾). Chin. Phys. B, 2023, 32(2): 024214.
[4] Dynamic modeling of total ionizing dose-induced threshold voltage shifts in MOS devices
Guangbao Lu(陆广宝), Jun Liu(刘俊), Chuanguo Zhang(张传国), Yang Gao(高扬), and Yonggang Li(李永钢). Chin. Phys. B, 2023, 32(1): 018506.
[5] Migration of weakly bonded oxygen atoms in a-IGZO thin films and the positive shift of threshold voltage in TFTs
Chen Wang(王琛), Wenmo Lu(路文墨), Fengnan Li(李奉南), Qiaomei Luo(罗巧梅), and Fei Ma(马飞). Chin. Phys. B, 2022, 31(9): 096101.
[6] Combined effects of cycling endurance and total ionizing dose on floating gate memory cells
Si-De Song(宋思德), Guo-Zhu Liu(刘国柱), Qi He(贺琪), Xiang Gu(顾祥), Gen-Shen Hong(洪根深), and Jian-Wei Wu(吴建伟). Chin. Phys. B, 2022, 31(5): 056107.
[7] Photon number resolvability of multi-pixel superconducting nanowire single photon detectors using a single flux quantum circuit
Hou-Rong Zhou(周后荣), Kun-Jie Cheng(程昆杰), Jie Ren(任洁), Li-Xing You(尤立星),Li-Liang Ying(应利良), Xiao-Yan Yang(杨晓燕), Hao Li(李浩), and Zhen Wang(王镇). Chin. Phys. B, 2022, 31(5): 057401.
[8] Improving the performance of a GaAs nanowire photodetector using surface plasmon polaritons
Xiaotian Zhu(朱笑天), Bingheng Meng(孟兵恒), Dengkui Wang(王登魁), Xue Chen(陈雪), Lei Liao(廖蕾), Mingming Jiang(姜明明), and Zhipeng Wei(魏志鹏). Chin. Phys. B, 2022, 31(4): 047801.
[9] Orientation and ellipticity dependence of high-order harmonic generation in nanowires
Fan Yang(杨帆), Yinghui Zheng(郑颖辉), Luyao Zhang(张路遥), Xiaochun Ge(葛晓春), and Zhinan Zeng(曾志男). Chin. Phys. B, 2022, 31(4): 044204.
[10] Emerging of Ag particles on ZnO nanowire arrays for blue-ray hologram storage
Ning Li(李宁), Xin Li(李鑫), Ming-Yue Zhang(张明越), Jing-Ying Miao(苗景迎), Shen-Cheng Fu(付申成), and Xin-Tong Zhang(张昕彤). Chin. Phys. B, 2022, 31(3): 036101.
[11] Mode characteristics of nested eccentric waveguides constructed by two cylindrical nanowires coated with graphene
Ji Liu(刘吉), Lixia Yu(于丽霞), and Wenrui Xue(薛文瑞). Chin. Phys. B, 2022, 31(3): 036803.
[12] Lithium ion batteries cathode material: V2O5
Baohe Yuan(袁保合), Xiang Yuan(袁祥), Binger Zhang(张冰儿), Zheng An(安政), Shijun Luo(罗世钧), and Lulu Chen(陈露露). Chin. Phys. B, 2022, 31(3): 038203.
[13] Interface modulated electron mobility enhancement in core-shell nanowires
Yan He(贺言), Hua-Kai Xu(许华慨), and Gang Ouyang(欧阳钢). Chin. Phys. B, 2022, 31(11): 110502.
[14] Study on a novel vertical enhancement-mode Ga2O3 MOSFET with FINFET structure
Liangliang Guo(郭亮良), Yuming Zhang(张玉明), Suzhen Luan(栾苏珍), Rundi Qiao(乔润迪), and Renxu Jia(贾仁需). Chin. Phys. B, 2022, 31(1): 017304.
[15] Observation of source/drain bias-controlled quantum transport spectrum in junctionless silicon nanowire transistor
Yang-Yan Guo(郭仰岩), Wei-Hua Han(韩伟华), Xiao-Di Zhang(张晓迪), Jun-Dong Chen(陈俊东), and Fu-Hua Yang(杨富华). Chin. Phys. B, 2022, 31(1): 017701.
No Suggested Reading articles found!