Please wait a minute...
Chin. Phys. B, 2015, Vol. 24(5): 057701    DOI: 10.1088/1674-1056/24/5/057701
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES Prev   Next  

Transparent ZnO/glass surface acoustic wave based high performance ultraviolet light sensors

Wang Wen-Bo (王文博)a, Gu Hang (谷航)a, He Xing-Li (何兴理)a, Xuan Wei-Peng (轩伟鹏)a, Chen Jin-Kai (陈金凯)a, Wang Xiao-Zhi (汪小知)a, Luo Ji-Kui (骆季奎)a b
a Department of Information Science & Electronic Engineering, and Cyrus Tang Center for Sensor Materials and Applications, Zhejiang University, Hangzhou 310027, China;
b Institute of Renewable Energy & Environment Technology, University of Bolton, Deane Road, Bolton, BL3 5AB, United Kingdom
Abstract  Surface acoustic wave (SAW) resonators are a type of ultraviolet (UV) light sensors with high sensitivity, and they have been extensively studied. Transparent SAW devices are very useful and can be developed into various sensors and microfluidics for sensing/monitoring and lab-on-chip applications. We report the fabrication of high sensitivity SAW UV sensors based on piezoelectric (PE) ZnO thin films deposited on glass substrates. The sensors were fabricated and their performances against the post-deposition annealing condition were investigated. It was found that the UV-light sensitivity is improved by more than one order of magnitude after annealing. The frequency response increases significantly and the response becomes much faster. The optimized devices also show a small temperature coefficient of frequency and excellent repeatability and stability, demonstrating its potential for UV-light sensing application.
Keywords:  surface acoustic wave      ultraviolet sensor      ZnO      thermal annealing  
Received:  03 November 2014      Revised:  24 December 2014      Accepted manuscript online: 
PACS:  77.65.Dq (Acoustoelectric effects and surface acoustic waves (SAW) in piezoelectrics)  
  07.07.Df (Sensors (chemical, optical, electrical, movement, gas, etc.); remote sensing)  
  81.40.Ef (Cold working, work hardening; annealing, post-deformation annealing, quenching, tempering recovery, and crystallization)  
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 61274037 and 61301046) and the Research Fund for the Doctoral Program of Higher Education of China (Grant Nos. 20120101110031 and 20120101110054).
Corresponding Authors:  ang Xiao-Zhi, Luo Ji-Kui     E-mail:  xw224@zju.edu.cn;Jackluo@zju.edu.cn
About author:  77.65.Dq; 07.07.Df; 81.40.Ef

Cite this article: 

Wang Wen-Bo (王文博), Gu Hang (谷航), He Xing-Li (何兴理), Xuan Wei-Peng (轩伟鹏), Chen Jin-Kai (陈金凯), Wang Xiao-Zhi (汪小知), Luo Ji-Kui (骆季奎) Transparent ZnO/glass surface acoustic wave based high performance ultraviolet light sensors 2015 Chin. Phys. B 24 057701

[1] Lim J H, Kang C K, Kim K K, Park I K, Hwang D K and Park S J 2006 Adv. Mater. 18 2720
[2] Zhao W, Dong X, Zhao L, Shi Z F, Wang J, Wang H, Xia X C, Chang Y C, Zhang B L and Du G T 2010 Chin. Phys. Lett. 27 128504
[3] Wang X, Song J, Liu J and Wang Z L 2007 Science 316 102
[4] Jia Z N, Zhang X D, Liu Y, Wang Y F, Fan J, Liu C C and Zhao Y 2014 Chin. Phys. B 23 046106
[5] Singh D, Narasimulu A A, Garcia-Gancedo L, Fu Y Q, Hasan T, Lin S S, Geng J, Shao G and Luo J K 2013 J. Mater. Chem. C 1 2525
[6] Zhang T, Wang Y, Liu W L, Cheng J G, Song Z T, Feng S L, Chan-Wong L H and Choy C L 2005 Chin. Phys. Lett. 22 694
[7] Du X Y, Fu Y Q, Luo J K, Flewitt A J and Milne W I 2009 J. Appl. Phys. 105 024508
[8] Jabeen M, Iqbal M A, Kumar R V, Ahmed M and Javed M T 2014 Chin. Phys. B 23 018504
[9] Zhao X L, Kang X, Chen L, Zhang Z B, Liu J L, Ouyang X P, Peng W B and He Y N 2014 Acta Phys. Sin. 63 098502 (in Chinese)
[10] Gedamu D, Paulowicz I, Kaps S, Lupan O, Wille S, Haidarschin G, Mishra Y K and Adelung R 2014 Adv. Mater. 26 1541
[11] Wang F, Zhao D, Guo Z, Liu L, Zhang Z and Shen D 2013 Nanoscale 5 2864
[12] Pan Y W, Ren S T, Qu S L and Wang Q 2013 Chin. Phys. B 22 118102
[13] Pang H F, Fu Y Q, Li Z J, Li Y F, Ma J Y, Placido F, Walton A J and Zu X T 2013 Sens. Actuators A 193 87
[14] Wei C L, Chen Y C, Cheng C C, Kao K S, Cheng D L and Cheng P S 2010 Thin Solid Films 518 3059
[15] He X L, Zhou J, Wang W B, Xuan W P, Yang X, Jin H and Luo J K 2014 J. Micromech. Microeng. 24 055014
[16] Chae G S 2001 Jpn. J. Appl. Phys. 40 1282
[17] Lunt R R and Bulovic V 2011 Appl. Phys. Lett. 98 113305
[18] Guillén C and Herrero J 2011 Thin Solid Films 520 1
[19] Zhou J, He X L, Wang W B, Zhu Q, Xuan W P, Jin H, Dong S R, Wang D M and Luo J K 2013 IEEE Electron. Dev. Lett. 34 1319
[20] Wang W B, Gu H, He X L, Xuan W P, Chen J K, Wang X Z and Luo J K 2014 Appl. Phys. Lett. 104 212107
[21] Peng W B, He Y N, Xu Y L, Jin S H, Ma K, Zhao X L, Kang X and Wen C B 2013 Sens. Actuators A 199 149
[22] Lai L W and Lee C T 2008 Mater. Chem. Phys. 110 393
[23] Rotter M, Wixforth A, Ruile W, Bernklau D and Riechert H 1998 Appl. Phys. Lett. 73 2128
[24] Sharma P and Sreenivas K 2003 Appl. Phys. Lett. 83 3617
[25] Peng W B, He Y N, Wen C B and Ma K 2012 Sens. Actuators A 184 34
[26] Du X Y, Swanwick M E, Fu Y Q, Luo J K, Flewitt A J, Lee D S, Maeng S and Milne W I 2009 J. Micromech. Microeng. 19 035016
[1] Spectral shift of solid high-order harmonics from different channels in a combined laser field
Dong-Dong Cao(曹冬冬), Xue-Fei Pan(潘雪飞), Jun Zhang(张军), and Xue-Shen Liu(刘学深). Chin. Phys. B, 2023, 32(3): 034204.
[2] High-quality CdS quantum dots sensitized ZnO nanotube array films for superior photoelectrochemical performance
Qian-Qian Gong(宫倩倩), Yun-Long Zhao(赵云龙), Qi Zhang(张奇), Chun-Yong Hu(胡春永), Teng-Fei Liu(刘腾飞), Hai-Feng Zhang(张海峰), Guang-Chao Yin(尹广超), and Mei-Ling Sun(孙美玲). Chin. Phys. B, 2022, 31(9): 098103.
[3] Temperature and strain sensitivities of surface and hybrid acoustic wave Brillouin scattering in optical microfibers
Yi Liu(刘毅), Yuanqi Gu(顾源琦), Yu Ning(宁钰), Pengfei Chen(陈鹏飞), Yao Yao(姚尧),Yajun You(游亚军), Wenjun He(贺文君), and Xiujian Chou(丑修建). Chin. Phys. B, 2022, 31(9): 094208.
[4] Emerging of Ag particles on ZnO nanowire arrays for blue-ray hologram storage
Ning Li(李宁), Xin Li(李鑫), Ming-Yue Zhang(张明越), Jing-Ying Miao(苗景迎), Shen-Cheng Fu(付申成), and Xin-Tong Zhang(张昕彤). Chin. Phys. B, 2022, 31(3): 036101.
[5] Boosting the performance of crossed ZnO microwire UV photodetector by mechanical contact homo-interface barrier
Yinzhe Liu(刘寅哲), Kewei Liu(刘可为), Jialin Yang(杨佳霖), Zhen Cheng(程祯), Dongyang Han(韩冬阳), Qiu Ai(艾秋), Xing Chen(陈星), Yongxue Zhu(朱勇学), Binghui Li(李炳辉), Lei Liu(刘雷), and Dezhen Shen(申德振). Chin. Phys. B, 2022, 31(10): 106101.
[6] Three-dimensional vertical ZnO transistors with suspended top electrodes fabricated by focused ion beam technology
Chi Sun(孙驰), Linyuan Zhao(赵林媛), Tingting Hao(郝婷婷), Renrong Liang(梁仁荣), Haitao Ye(叶海涛), Junjie Li(李俊杰), and Changzhi Gu(顾长志). Chin. Phys. B, 2022, 31(1): 016801.
[7] Analysis of properties of krypton ion-implanted Zn-polar ZnO thin films
Qing-Fen Jiang(姜清芬), Jie Lian(连洁), Min-Ju Ying(英敏菊), Ming-Yang Wei(魏铭洋), Chen-Lin Wang(王宸琳), and Yu Zhang(张裕). Chin. Phys. B, 2021, 30(9): 097801.
[8] Effect of surface oxygen vacancy defects on the performance of ZnO quantum dots ultraviolet photodetector
Hongyu Ma(马宏宇), Kewei Liu(刘可为), Zhen Cheng(程祯), Zhiyao Zheng(郑智遥), Yinzhe Liu(刘寅哲), Peixuan Zhang(张培宣), Xing Chen(陈星), Deming Liu(刘德明), Lei Liu(刘雷), and Dezhen Shen(申德振). Chin. Phys. B, 2021, 30(8): 087303.
[9] Design and fabrication of GeAsSeS chalcogenide waveguides with thermal annealing
Limeng Zhang(张李萌), Jinbo Chen(陈锦波), Jierong Gu(顾杰荣), Yixiao Gao(高一骁), Xiang Shen(沈祥), Yimin Chen(陈益敏), and Tiefeng Xu(徐铁峰). Chin. Phys. B, 2021, 30(3): 034210.
[10] Improved efficiency and stability of perovskite solar cells with molecular ameliorating of ZnO nanorod/perovskite interface and Mg-doping ZnO
Zhenyun Zhang(张振雲), Lei Xu(许磊), and Junjie Qi(齐俊杰). Chin. Phys. B, 2021, 30(3): 038801.
[11] Characterization of low-resistance ohmic contacts to heavily carbon-doped n-type InGaAsBi films treated by rapid thermal annealing
Shu-Xing Zhou(周书星), Li-Kun Ai(艾立鹍), Ming Qi(齐鸣), An-Huai Xu(徐安怀), Jia-Sheng Yan(颜家圣), Shu-Sen Li(李树森), and Zhi Jin(金智). Chin. Phys. B, 2021, 30(2): 027304.
[12] In-situ fabrication of ZnO nanoparticles sensors based on gas-sensing electrode for ppb-level H2S detection at room temperature
Jing-Yue Xuan(宣景悦), Guo-Dong Zhao(赵国栋), Xiao-Bo Shi(史小波), Wei Geng(耿伟), Heng-Zheng Li(李恒征), Mei-Ling Sun(孙美玲), Fu-Chao Jia(贾福超), Shu-Gang Tan(谭树刚), Guang-Chao Yin(尹广超), and Bo Liu(刘波). Chin. Phys. B, 2021, 30(2): 020701.
[13] Utilizing of high-pressure high-temperature synthesis to enhance the thermoelectric properties of Zn0.98Al0.02O with excellent electrical properties
Qi Chen(陈启), Xinjian Li(李欣健), Yao Wang(王遥), Lijie Chang(常立杰), Jian Wang(王健), Yuewen Zhang(张跃文), Hongan Ma(马红安), and Xiaopeng Jia(贾晓鹏). Chin. Phys. B, 2021, 30(1): 016202.
[14] High performance Cu2O film/ZnO nanowires self-powered photodetector by electrochemical deposition
Deshuang Guo(郭德双), Wei Li(李微), Dengkui Wang(王登魁), Bingheng Meng(孟兵恒), Dan Fang(房丹), Zhipeng Wei(魏志鹏). Chin. Phys. B, 2020, 29(9): 098504.
[15] Performance of beam-type piezoelectric vibration energy harvester based on ZnO film fabrication and improved energy harvesting circuit
Shan Gao(高珊), Chong-Yang Zhang(张重扬), Hong-Rui Ao(敖宏瑞), Hong-Yuan Jiang(姜洪源). Chin. Phys. B, 2020, 29(8): 088401.
No Suggested Reading articles found!