Please wait a minute...
Chin. Phys. B, 2015, Vol. 24(4): 047305    DOI: 10.1088/1674-1056/24/4/047305
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES Prev   Next  

Perfect GMR effect in gapped graphene-based ferromagnetic—normal—ferromagnetic junctions

Hossein Karbaschi, Gholam Reza Rashedi
Department of Physics, University of Isfahan, Hezar Jerib Ave., Isfahan 81746-73441, Iran
Abstract  We investigate the quantum transport property in gapped graphene-based ferromagnetic/normal/ferromagnetic (FG/NG/FG) junctions by using Dirac-Bogoliubov-de Gennes equation. The graphene is fabricated on SiC and BN substrates separately, so carriers in FG/NG/FG structures are considered as massive relativistic particles. Transmission probability, charge, and spin conductances are studied as a function of exchange energy of ferromagnets (h), size of graphene gap, and thickness of normal graphene region (L) respectively. Using the experimental values of Fermi energy in the normal graphene part (EFN~ 400 meV) and energy gap in graphene (260 meV for SiC and 50 meV for BN substrate), it is shown that this structure can be used for both spin-up and spin-down polarized current. The latter case has different behavior of gapped FG/NG/FG from that of gapless FG/NG/FG structures. Also perfect charge giant magnetoresistance is observed in a range of EFN-mvF2<h<EFN+mvF2.
Keywords:  graphene      spin-polarized current      giant magnetoresistance      nanoscale structures  
Received:  17 September 2014      Revised:  13 November 2014      Accepted manuscript online: 
PACS:  73.63.-b (Electronic transport in nanoscale materials and structures)  
  72.25.-b (Spin polarized transport)  
  72.80.Vp (Electronic transport in graphene)  
Corresponding Authors:  Hossein Karbaschi     E-mail:  h.karbaschi@sci.ui.ac.ir

Cite this article: 

Hossein Karbaschi, Gholam Reza Rashedi Perfect GMR effect in gapped graphene-based ferromagnetic—normal—ferromagnetic junctions 2015 Chin. Phys. B 24 047305

[1] Novoselov K S, Geim A K, Morozov S V, Jiang D, Zhang Y, Dubonos S V, Grigorieva I V and Firsov A A 2004 Science 306 666
[2] Heersche H B, Herrero P J, Oostinga J B, Vandersypen L M K and Morpurgo A F 2007 Nature 446 56
[3] Schedin F, Geim A K, Morozov S V, Hill E W, Blake P, Katsnelson M I and Novoselov K S 2007 Nat. Mater. 6 652
[4] Novoselov K 2007 Nat. Mater. 6 720
[5] Harada N, Ohfuti M and Awano Y 2008 Appl. Phys. Express 1 024002
[6] Semenoff G W, Semenoff V and Zhou F 2008 Phys. Rev. Lett. 101 087204
[7] Zhu W, Wang Z, Shi Q, Szeto K Y, Chen J and Hou J G 2009 Phys. Rev. B 79 155430
[8] Jiang L W, Zheng Y S, Li H D and Shen H H 2010 Nanotechnology 21 145703
[9] Mousavi H 2013 Physica B 414 78
[10] Giovannetti G, Khomyakov P A, Brocks G, Kelly P J and van den Brink J 2007 Phys. Rev. B 76 073103
[11] Zhou S Y, Gweon G H, Fedorov A V, First P N, de Heer W A, Lee D H, Guinea F, Castro Neto A H and Lanzara A 2007 Nat. Mater. 6 770
[12] Soodchomshom B, Tang I M and Hoonsawat R 2009 Phys. Lett. A 373
[13] Kotov V N, Pereire V M and Uchoa B 2008 Phys. Rev. B 78 075433
[14] Zareyan M, Mohammadpour H and Moghaddam A G 2008 Phys. Rev. B 78 193406
[15] Linder J, Zareyan M and Sudbo A 2009 Phys. Rev. B 80 014513
[16] Mir Mojarabian F and Rashedi G 2011 Physica E 44 647
[17] Salehi M and Rashedi G 2010 Physica C 470 703
[18] Gao W Z, Sun L and Zheng Y S 2007 Chin. Phys. Lett. 24 1693
[19] Ma Y N, Ren J F, Zhang Y B, Liu D S and Xie S J 2007 Chin. Phys. Lett. 24 1697
[20] Wang T X, Wei H X, Han X F, Langford R M, Thornton M, Bari M A and Coey J M D 2006 Chin. Phys. Lett. 23 2852
[21] Zhang G B, Wang S J and Li L 2006 Chin. Phys. Lett. 23 1570
[22] Yuan S L, Liu L, Zhong Q H, Cao H, Xiao X, Chen W, Miao J H, Niu L Y, Zhang G H, Xia Z C and Liu S 2004 Chin. Phys. Lett. 21 1352
[23] Xiu M X, Ren J F, Wang Y M, Yuan X B and Hu G C 2010 Acta Phys. Sin. 59 8856 (in Chinese)
[24] Qiao S Z, Zhao J Q, Jia Z F, Zhang N Y, Wang F X, Fu G and Ji Y J 2010 Acta Phys. Sin. 59 8856 (in Chinese)
[25] Li P, Jin C, Mi W B and Bai H L 2013 Chin. Phys. B 22 047505
[26] Yuan S P, Shen C, Zheng H Z, Liu Q, Wang L G, Meng K K and Zhao J H 2013 Chin. Phys. B 22 047202
[27] Wang Y M, Ren J F, Yuan X B, Dou Z T and Hu G C 2012 Chin. Phys. B 21 108508
[28] Wang J and Zhang L 2011 Chin. Phys. B 20 127203
[29] Duan Z G, Wang H Y, Liao W H and Zhou G H 2010 Chin. Phys. B 19 037301
[30] Guo Y, Guo W and Chen C 2008 Appl. Phys. Lett. 92 243101
[31] Behpour M, Meshki M and Masoum S 2013 J. Nanostructures 3 243
[32] Guo Y, Guo W and Chen C 2009 Phys. Rev. B 80 085424
[33] Guo Y, Zhang Z and Guo W 2010 J. Phys. Chem. C 114 14729
[34] Ghoreishi F S, Ahmadi V and Samadpour M 2013 J. Nanostructures 3 453
[35] Iranmanesh A and Alizadeh Y 2011 Int. J. Nanosci. Nanotechnol. 7 28
[36] Guo Y and Guo W 2012 J. Phys. Chem. C 117 692
[37] Monemzadeh M, Taie M and Khoshnevisan B 2013 J. Nanostructures 3 315
[38] Guo Y and Guo W 2012 J. Appl. Phys. 111 074317
[39] Fang Z, Liu Z, Wang Y, Ajayan P M, Nordlander P and Halas N 2012 Nano Lett. 12 3808
[40] Fang Z, Wang Y, Liu Z, Schlather A, Ajayan P M, Koppens F H L, Nordlander P and Halas N 2012 ACS Nano 6 10222
[41] Fang Z, Thongrattanasiri S, Schlather A, Liu Z, Ma L, Wang Y, Ajayan P M, Nordlander P, Halas N and de Abajo F J G 2013 ACS Nano 7 2388
[42] Fang Z, Wang Y, Schlather A, Liu Z, Ajayan P M, de Abajo F J G, Nordlander P, Zhu X and Halas N 2014 Nano. Lett. 14 299
[43] Peres N M R, Araújo M A N and Bozi D 2004 Phys. Rev. B 70 195122
[44] Katsnelson M I 2006 Eur. Phys. J. B 51 157
[45] Tworzydlo J, Trauzettel B, Titov M, Rycerz A and Beenakker C W J 2006 Phys. Rev. Lett. 96 246802
[46] Berry M V and Mondragon R J 1987 Proc. Roy. Soc. Lond. A 412 53
[47] Yokoyama T, Linder J and Sudbo A 2008 Phys. Rev. B 77 132503
[48] Bozovic M and Radovic Z 2002 Phys. Rev. B 66 134524
[49] Annunziata G, Enoksen H, Linder J, Cuoco M, Noce C and Sudbo A 2011 Phys. Rev. B 83 144520
[50] Soodchomshom B, Tang I M and Hoonsawat R 2009 Physica E 41 1475
[51] Soodchomshom B, Tang I M and Hoonsawat R 2008 Phys. Lett. A 372 5054
[52] Zheng Z M, Qi Y N, Xing D Y and Dong J M 1999 Phys. Rev. B 59 14505
[1] Polarization Raman spectra of graphene nanoribbons
Wangwei Xu(许望伟), Shijie Sun(孙诗杰), Muzi Yang(杨慕紫), Zhenliang Hao(郝振亮), Lei Gao(高蕾), Jianchen Lu(卢建臣), Jiasen Zhu(朱嘉森), Jian Chen(陈建), and Jinming Cai(蔡金明). Chin. Phys. B, 2023, 32(4): 046803.
[2] Spin- and valley-polarized Goos-Hänchen-like shift in ferromagnetic mass graphene junction with circularly polarized light
Mei-Rong Liu(刘美荣), Zheng-Fang Liu(刘正方), Ruo-Long Zhang(张若龙), Xian-Bo Xiao(肖贤波), and Qing-Ping Wu(伍清萍). Chin. Phys. B, 2023, 32(3): 037301.
[3] Graphene metasurface-based switchable terahertz half-/quarter-wave plate with a broad bandwidth
Xiaoqing Luo(罗小青), Juan Luo(罗娟), Fangrong Hu(胡放荣), and Guangyuan Li(李光元). Chin. Phys. B, 2023, 32(2): 027801.
[4] Correlated states in alternating twisted bilayer-monolayer-monolayer graphene heterostructure
Ruirui Niu(牛锐锐), Xiangyan Han(韩香岩), Zhuangzhuang Qu(曲壮壮), Zhiyu Wang(王知雨), Zhuoxian Li(李卓贤), Qianling Liu(刘倩伶), Chunrui Han(韩春蕊), and Jianming Lu(路建明). Chin. Phys. B, 2023, 32(1): 017202.
[5] Adsorption dynamics of double-stranded DNA on a graphene oxide surface with both large unoxidized and oxidized regions
Mengjiao Wu(吴梦娇), Huishu Ma(马慧姝), Haiping Fang(方海平), Li Yang(阳丽), and Xiaoling Lei(雷晓玲). Chin. Phys. B, 2023, 32(1): 018701.
[6] Influence of Dzyaloshinskii-Moriya interaction on the magnetic vortex reversal in an off-centered nanocontact geometry
Hua-Nan Li(李化南), Tong-Xin Xue(薛彤鑫), Lei Chen(陈磊), Ying-Rui Sui(隋瑛瑞), and Mao-Bin Wei(魏茂彬). Chin. Phys. B, 2022, 31(9): 097501.
[7] Precisely controlling the twist angle of epitaxial MoS2/graphene heterostructure by AFM tip manipulation
Jiahao Yuan(袁嘉浩), Mengzhou Liao(廖梦舟), Zhiheng Huang(黄智恒), Jinpeng Tian(田金朋), Yanbang Chu(褚衍邦), Luojun Du(杜罗军), Wei Yang(杨威), Dongxia Shi(时东霞), Rong Yang(杨蓉), and Guangyu Zhang(张广宇). Chin. Phys. B, 2022, 31(8): 087302.
[8] Longitudinal conductivity in ABC-stacked trilayer graphene under irradiating of linearly polarized light
Guo-Bao Zhu(朱国宝), Hui-Min Yang(杨慧敏), and Jie Yang(杨杰). Chin. Phys. B, 2022, 31(8): 088102.
[9] Dual-channel tunable near-infrared absorption enhancement with graphene induced by coupled modes of topological interface states
Zeng-Ping Su(苏增平), Tong-Tong Wei(魏彤彤), and Yue-Ke Wang(王跃科). Chin. Phys. B, 2022, 31(8): 087804.
[10] Recent advances of defect-induced spin and valley polarized states in graphene
Yu Zhang(张钰), Liangguang Jia(贾亮广), Yaoyao Chen(陈瑶瑶), Lin He(何林), and Yeliang Wang(王业亮). Chin. Phys. B, 2022, 31(8): 087301.
[11] Dynamically tunable multiband plasmon-induced transparency effect based on graphene nanoribbon waveguide coupled with rectangle cavities system
Zi-Hao Zhu(朱子豪), Bo-Yun Wang(王波云), Xiang Yan(闫香), Yang Liu(刘洋), Qing-Dong Zeng(曾庆栋), Tao Wang(王涛), and Hua-Qing Yu(余华清). Chin. Phys. B, 2022, 31(8): 084210.
[12] Valley-dependent transport in strain engineering graphene heterojunctions
Fei Wan(万飞), X R Wang(王新茹), L H Liao(廖烈鸿), J Y Zhang(张嘉颜),M N Chen(陈梦南), G H Zhou(周光辉), Z B Siu(萧卓彬), Mansoor B. A. Jalil, and Yuan Li(李源). Chin. Phys. B, 2022, 31(7): 077302.
[13] Photoelectrochemical activity of ZnO:Ag/rGO photo-anodes synthesized by two-steps sol-gel method
D Ben Jemia, M Karyaoui, M A Wederni, A Bardaoui, M V Martinez-Huerta, M Amlouk, and R Chtourou. Chin. Phys. B, 2022, 31(5): 058201.
[14] Thermionic electron emission in the 1D edge-to-edge limit
Tongyao Zhang(张桐耀), Hanwen Wang(王汉文), Xiuxin Xia(夏秀鑫), Chengbing Qin(秦成兵), and Xiaoxi Li(李小茜). Chin. Phys. B, 2022, 31(5): 058504.
[15] Light-modulated electron retroreflection and Klein tunneling in a graphene-based n-p-n junction
Xingfei Zhou(周兴飞), Ziying Wu(吴子瀛), Yuchen Bai(白宇晨), Qicheng Wang(王起程), Zhentao Zhu(朱震涛), Wei Yan(闫巍), and Yafang Xu(许亚芳). Chin. Phys. B, 2022, 31(4): 047301.
No Suggested Reading articles found!