CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES |
Prev
Next
|
|
|
Perfect GMR effect in gapped graphene-based ferromagnetic—normal—ferromagnetic junctions |
Hossein Karbaschi, Gholam Reza Rashedi |
Department of Physics, University of Isfahan, Hezar Jerib Ave., Isfahan 81746-73441, Iran |
|
|
Abstract We investigate the quantum transport property in gapped graphene-based ferromagnetic/normal/ferromagnetic (FG/NG/FG) junctions by using Dirac-Bogoliubov-de Gennes equation. The graphene is fabricated on SiC and BN substrates separately, so carriers in FG/NG/FG structures are considered as massive relativistic particles. Transmission probability, charge, and spin conductances are studied as a function of exchange energy of ferromagnets (h), size of graphene gap, and thickness of normal graphene region (L) respectively. Using the experimental values of Fermi energy in the normal graphene part (EFN~ 400 meV) and energy gap in graphene (260 meV for SiC and 50 meV for BN substrate), it is shown that this structure can be used for both spin-up and spin-down polarized current. The latter case has different behavior of gapped FG/NG/FG from that of gapless FG/NG/FG structures. Also perfect charge giant magnetoresistance is observed in a range of EFN-mvF2<h<EFN+mvF2.
|
Received: 17 September 2014
Revised: 13 November 2014
Accepted manuscript online:
|
PACS:
|
73.63.-b
|
(Electronic transport in nanoscale materials and structures)
|
|
72.25.-b
|
(Spin polarized transport)
|
|
72.80.Vp
|
(Electronic transport in graphene)
|
|
Corresponding Authors:
Hossein Karbaschi
E-mail: h.karbaschi@sci.ui.ac.ir
|
Cite this article:
Hossein Karbaschi, Gholam Reza Rashedi Perfect GMR effect in gapped graphene-based ferromagnetic—normal—ferromagnetic junctions 2015 Chin. Phys. B 24 047305
|
[1] |
Novoselov K S, Geim A K, Morozov S V, Jiang D, Zhang Y, Dubonos S V, Grigorieva I V and Firsov A A 2004 Science 306 666
|
[2] |
Heersche H B, Herrero P J, Oostinga J B, Vandersypen L M K and Morpurgo A F 2007 Nature 446 56
|
[3] |
Schedin F, Geim A K, Morozov S V, Hill E W, Blake P, Katsnelson M I and Novoselov K S 2007 Nat. Mater. 6 652
|
[4] |
Novoselov K 2007 Nat. Mater. 6 720
|
[5] |
Harada N, Ohfuti M and Awano Y 2008 Appl. Phys. Express 1 024002
|
[6] |
Semenoff G W, Semenoff V and Zhou F 2008 Phys. Rev. Lett. 101 087204
|
[7] |
Zhu W, Wang Z, Shi Q, Szeto K Y, Chen J and Hou J G 2009 Phys. Rev. B 79 155430
|
[8] |
Jiang L W, Zheng Y S, Li H D and Shen H H 2010 Nanotechnology 21 145703
|
[9] |
Mousavi H 2013 Physica B 414 78
|
[10] |
Giovannetti G, Khomyakov P A, Brocks G, Kelly P J and van den Brink J 2007 Phys. Rev. B 76 073103
|
[11] |
Zhou S Y, Gweon G H, Fedorov A V, First P N, de Heer W A, Lee D H, Guinea F, Castro Neto A H and Lanzara A 2007 Nat. Mater. 6 770
|
[12] |
Soodchomshom B, Tang I M and Hoonsawat R 2009 Phys. Lett. A 373
|
[13] |
Kotov V N, Pereire V M and Uchoa B 2008 Phys. Rev. B 78 075433
|
[14] |
Zareyan M, Mohammadpour H and Moghaddam A G 2008 Phys. Rev. B 78 193406
|
[15] |
Linder J, Zareyan M and Sudbo A 2009 Phys. Rev. B 80 014513
|
[16] |
Mir Mojarabian F and Rashedi G 2011 Physica E 44 647
|
[17] |
Salehi M and Rashedi G 2010 Physica C 470 703
|
[18] |
Gao W Z, Sun L and Zheng Y S 2007 Chin. Phys. Lett. 24 1693
|
[19] |
Ma Y N, Ren J F, Zhang Y B, Liu D S and Xie S J 2007 Chin. Phys. Lett. 24 1697
|
[20] |
Wang T X, Wei H X, Han X F, Langford R M, Thornton M, Bari M A and Coey J M D 2006 Chin. Phys. Lett. 23 2852
|
[21] |
Zhang G B, Wang S J and Li L 2006 Chin. Phys. Lett. 23 1570
|
[22] |
Yuan S L, Liu L, Zhong Q H, Cao H, Xiao X, Chen W, Miao J H, Niu L Y, Zhang G H, Xia Z C and Liu S 2004 Chin. Phys. Lett. 21 1352
|
[23] |
Xiu M X, Ren J F, Wang Y M, Yuan X B and Hu G C 2010 Acta Phys. Sin. 59 8856 (in Chinese)
|
[24] |
Qiao S Z, Zhao J Q, Jia Z F, Zhang N Y, Wang F X, Fu G and Ji Y J 2010 Acta Phys. Sin. 59 8856 (in Chinese)
|
[25] |
Li P, Jin C, Mi W B and Bai H L 2013 Chin. Phys. B 22 047505
|
[26] |
Yuan S P, Shen C, Zheng H Z, Liu Q, Wang L G, Meng K K and Zhao J H 2013 Chin. Phys. B 22 047202
|
[27] |
Wang Y M, Ren J F, Yuan X B, Dou Z T and Hu G C 2012 Chin. Phys. B 21 108508
|
[28] |
Wang J and Zhang L 2011 Chin. Phys. B 20 127203
|
[29] |
Duan Z G, Wang H Y, Liao W H and Zhou G H 2010 Chin. Phys. B 19 037301
|
[30] |
Guo Y, Guo W and Chen C 2008 Appl. Phys. Lett. 92 243101
|
[31] |
Behpour M, Meshki M and Masoum S 2013 J. Nanostructures 3 243
|
[32] |
Guo Y, Guo W and Chen C 2009 Phys. Rev. B 80 085424
|
[33] |
Guo Y, Zhang Z and Guo W 2010 J. Phys. Chem. C 114 14729
|
[34] |
Ghoreishi F S, Ahmadi V and Samadpour M 2013 J. Nanostructures 3 453
|
[35] |
Iranmanesh A and Alizadeh Y 2011 Int. J. Nanosci. Nanotechnol. 7 28
|
[36] |
Guo Y and Guo W 2012 J. Phys. Chem. C 117 692
|
[37] |
Monemzadeh M, Taie M and Khoshnevisan B 2013 J. Nanostructures 3 315
|
[38] |
Guo Y and Guo W 2012 J. Appl. Phys. 111 074317
|
[39] |
Fang Z, Liu Z, Wang Y, Ajayan P M, Nordlander P and Halas N 2012 Nano Lett. 12 3808
|
[40] |
Fang Z, Wang Y, Liu Z, Schlather A, Ajayan P M, Koppens F H L, Nordlander P and Halas N 2012 ACS Nano 6 10222
|
[41] |
Fang Z, Thongrattanasiri S, Schlather A, Liu Z, Ma L, Wang Y, Ajayan P M, Nordlander P, Halas N and de Abajo F J G 2013 ACS Nano 7 2388
|
[42] |
Fang Z, Wang Y, Schlather A, Liu Z, Ajayan P M, de Abajo F J G, Nordlander P, Zhu X and Halas N 2014 Nano. Lett. 14 299
|
[43] |
Peres N M R, Araújo M A N and Bozi D 2004 Phys. Rev. B 70 195122
|
[44] |
Katsnelson M I 2006 Eur. Phys. J. B 51 157
|
[45] |
Tworzydlo J, Trauzettel B, Titov M, Rycerz A and Beenakker C W J 2006 Phys. Rev. Lett. 96 246802
|
[46] |
Berry M V and Mondragon R J 1987 Proc. Roy. Soc. Lond. A 412 53
|
[47] |
Yokoyama T, Linder J and Sudbo A 2008 Phys. Rev. B 77 132503
|
[48] |
Bozovic M and Radovic Z 2002 Phys. Rev. B 66 134524
|
[49] |
Annunziata G, Enoksen H, Linder J, Cuoco M, Noce C and Sudbo A 2011 Phys. Rev. B 83 144520
|
[50] |
Soodchomshom B, Tang I M and Hoonsawat R 2009 Physica E 41 1475
|
[51] |
Soodchomshom B, Tang I M and Hoonsawat R 2008 Phys. Lett. A 372 5054
|
[52] |
Zheng Z M, Qi Y N, Xing D Y and Dong J M 1999 Phys. Rev. B 59 14505
|
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|