Please wait a minute...
Chin. Phys. B, 2015, Vol. 24(4): 045201    DOI: 10.1088/1674-1056/24/4/045201
PHYSICS OF GASES, PLASMAS, AND ELECTRIC DISCHARGES Prev   Next  

The enhancement of 21.2%-power conversion efficiency in polymer photovoltaic cells by using mixed Au nanoparticles with a wide absorption spectrum of 400 nm-1000 nm

Hao Jing-Yu (郝敬昱)a, Xu Ying (徐颖)a, Zhang Yu-Pei (张玉佩)a, Chen Shu-Fen (陈淑芬)a, Li Xing-Ao (李兴鳌)a, Wang Lian-Hui (汪联辉)a, Huang Wei (黄维)a b
a Key Laboratory for Organic Electronics and Information Displays and Institute of Advanced Materials (IAM), Jiangsu National Synergistic Innovation Center for Advanced Materials (SICAM), Nanjing University of Posts and Telecommunications, Nanjing 210023, China;
b Key Laboratory of Flexible Electronics (KLOFE) and Institute of Advanced Materials (IAM), Jiangsu National Synergistic Innovation Center for Advanced Materials (SICAM), Nanjing Tech University, Nanjing 211816, China
Abstract  Au nanoparticles (NPs) mixed with a majority of bone-like, rod, and cube shapes and a minority of irregular spheres, which can generate a wide absorption spectrum of 400 nm-1000 nm and three localized surface plasmon resonance peaks, respectively, at 525, 575, and 775 nm, are introduced into the hole extraction layer poly(3,4-ethylenedioxythiophene):poly(4-styrenesulfonate) (PEDOT:PSS) to improve optical-to-electrical conversion performances in polymer photovoltaic cells. With the doping concentration of Au NPs optimized, the cell performance is significantly improved: the short-circuit current density and power conversion efficiency of the poly(3-hexylthiophene): [6,6]-phenyl-C60-butyric acid methyl ester cell are increased by 20.54% and 21.2%, reaching 11.15 mA·cm-2 and 4.23%. The variations of optical, electrical, and morphology with the incorporation of Au NPs in the cells are analyzed in detail, and our results demonstrate that the cell performance improvement can be attributed to a synergistic reaction, including: 1) both the localized surface plasmon resonance- and scattering-induced absorption enhancement of the active layer, 2) Au doping-induced hole transport/extraction ability enhancement, and 3) large interface roughness-induced efficient exciton dissociation and hole collection.
Keywords:  Au nanoparticle      polymer solar cells      localized surface plasmon resonance      scattering      hole transport  
Received:  20 September 2014      Revised:  13 November 2014      Accepted manuscript online: 
PACS:  52.35.Hr (Electromagnetic waves (e.g., electron-cyclotron, Whistler, Bernstein, upper hybrid, lower hybrid))  
  52.25.Tx (Emission, absorption, and scattering of particles)  
  68.37.Lp (Transmission electron microscopy (TEM))  
  68.37.Ps (Atomic force microscopy (AFM))  
Fund: Project supported by the National Basic Research Program of China (Grant Nos. 2015CB932202 and 2012CB933301), the National Natural Science Foundation of China (Grant Nos. 61274065, 51173081, 61136003, BZ2010043, 51372119, and 51172110), the Science Fund from the Ministry of Education of China (Grant No. IRT1148), the Specialized Research Fund for the Doctoral Program of Higher Education of China (Grant No. 20113223110005), the Priority Academic Program Development of Jiangsu Provincial Higher Education Institutions (Grant No. YX03001), and the National Synergistic Innovation Center for Advanced Materials and the Synergetic Innovation Center for Organic Electronics and Information Displays, China.
Corresponding Authors:  Chen Shu-Fen     E-mail:  iamsfchen@njupt.edu.cn

Cite this article: 

Hao Jing-Yu (郝敬昱), Xu Ying (徐颖), Zhang Yu-Pei (张玉佩), Chen Shu-Fen (陈淑芬), Li Xing-Ao (李兴鳌), Wang Lian-Hui (汪联辉), Huang Wei (黄维) The enhancement of 21.2%-power conversion efficiency in polymer photovoltaic cells by using mixed Au nanoparticles with a wide absorption spectrum of 400 nm-1000 nm 2015 Chin. Phys. B 24 045201

[1] Peumans P, Yakimov A and Forrest S R 2003 J. Appl. Phys. 93 3693
[2] Halls J J M, Walsh C A, Greenham N C, Marseglia E A, Friend R H, Moratti S C and Holmes A B 1995 Nature 376 498
[3] Xue J, Rand B P, Uchida S and Forrest S R 2005 Adv. Mater. 17 66
[4] Shao Y and Yang Y 2005 Adv. Mater. 17 2841
[5] You H L and Zhang C F 2008 Chin. Phys. B 18 349
[6] Inganas O, Zhang F and Andersson M R 2009 Acc. Chem. Res. 42 1731
[7] Chen F C, Wu J L, Lee C L, Hong Y, Kuo C H and Huang M H 2009 Appl. Phys. Lett. 95 013305
[8] Wu J L, Chen F C, Hsiao Y S, Chien F C, Chen P, Kuo C H, Huang M H and Hsu C S 2011 ACS Nano 5 959
[9] Chang Y C, Chou FY, Yeh P H, Chen H W, Chang S H, Lan Y C, Guo T F, Tsai T C and Lee C T 2007 J. Vac. Sci. Technol. B 25 1899
[10] Lu L Y, Luo Z Q, Xu T and Yu L P 2013 Nano Lett. 13 59
[11] Chen F X, Wang L S and Xu W Y 2013 Chin. Phys. B 22 045202
[12] Yang J, You J B, Chen C C, Hsu W C, Tan H R, Zhang X W, Hong Z R and Yang Y 2011 ACS Nano 5 6210
[13] Fung D D S, Qiao L, Choy W C H, Wang C, Sha W E I, Xie F and He S 2011 J. Mater. Chem. 21 16349
[14] Li X, Choy W C H, Huo L, Xie F, Sha W E I, Ding B, Guo X, Li Y, Hou J, You J and Yang Y 2012 Adv. Mater. 24 3046
[15] Li G L, He L J, Li J, Li X S, Liang S, Gao M M and Yuan H W 2013 Acta Phys. Sin. 62 197202 (in Chinese)
[16] Li X, Choy W C H, Lu H, Sha W E I and Ho A H P 2013 Adv. Funct. Mater. 23 2728
[17] Chen C D, Yeh Y T and Wang C R C 2001 J. Phys. Chem. Solids 62 1587
[18] Felidj N, Aubard J, Levi G, Krenn J R, Salerno M, Schider G, Lamprecht B, Leitner A and Aussenegg F R 2002 Phys. Rev. B 65 075419
[19] Li R, Zhu Y B, Di Y, Liu D X, Li B and Zhong W 2013 Acta Phys. Sin. 62 198101 (in Chinese)
[20] Kolb D M, Ullmann R and Will T 1997 Science 275 1097
[21] Jana N R, Gearheart L and Murphy C J 2001 J. Phys. Chem. B 105 4065
[22] Murray W A and Barnes W L 2007 Adv. Mater. 19 3771
[23] Hsiao Y S, Charan S, Wu F Y, Chien F C, Chu C W, Chen P and Chen F C 2012 J. Phys. Chem. C 116 20731
[24] Chen X Q, Zuo L J, Fu W F, Yan Q X, Fan C C and Chen H Z 2013 Sol. Energy Mater. Sol. Cells 111 1
[25] Kim S S, Na S I, Jo J, Kim D Y and Nah Y C 2008 Appl. Phys. Lett. 93 073307
[26] Mihailetchi V D, Wildeman J and Blom P W M 2005 Phys. Rev. Lett. 94 314
[27] Wang C C D, Choy W C H, Duan C, Fung D D S, Sha W E I, Xie F X, Huang F and Cao Y 2012 J. Mater. Chem. 22 1206
[28] Hsu M H, Yu P, Huang J H, Chang C H, Wu C W, Cheng Y C and Chu C W 2011 Appl. Phys. Lett. 98 073308
[29] Li G, Shrotriya V, Yao Y and Yang Y 2005 J. Appl. Phys. 98 043704
[1] Effects of phonon bandgap on phonon-phonon scattering in ultrahigh thermal conductivity θ-phase TaN
Chao Wu(吴超), Chenhan Liu(刘晨晗). Chin. Phys. B, 2023, 32(4): 046502.
[2] Impact of amplified spontaneous emission noise on the SRS threshold of high-power fiber amplifiers
Wei Liu(刘伟), Shuai Ren(任帅), Pengfei Ma(马鹏飞), and Pu Zhou(周朴). Chin. Phys. B, 2023, 32(3): 034202.
[3] Floquet scattering through a parity-time symmetric oscillating potential
Xuzhen Cao(曹序桢), Zhaoxin Liang(梁兆新), and Ying Hu(胡颖). Chin. Phys. B, 2023, 32(3): 030302.
[4] Sub-stochiometric MoOx by radio-frequency magnetron sputtering as hole-selective passivating contacts for silicon heterojunction solar cells
Xiufang Yang(杨秀芳), Shengsheng Zhao(赵生盛), Qian Huang(黄茜), Cao Yu(郁超), Jiakai Zhou(周佳凯), Xiaoning Liu(柳晓宁), Xianglin Su(苏祥林),Ying Zhao(赵颖), and Guofu Hou(侯国付). Chin. Phys. B, 2022, 31(9): 098401.
[5] Temperature and strain sensitivities of surface and hybrid acoustic wave Brillouin scattering in optical microfibers
Yi Liu(刘毅), Yuanqi Gu(顾源琦), Yu Ning(宁钰), Pengfei Chen(陈鹏飞), Yao Yao(姚尧),Yajun You(游亚军), Wenjun He(贺文君), and Xiujian Chou(丑修建). Chin. Phys. B, 2022, 31(9): 094208.
[6] Elastic electron scattering with CH2Br2 and CCl2Br2: The role of the polarization effects
Xiaoli Zhao(赵小利) and Kedong Wang(王克栋). Chin. Phys. B, 2022, 31(8): 083402.
[7] Integral cross sections for electron impact excitations of argon and carbon dioxide
Shu-Xing Wang(汪书兴) and Lin-Fan Zhu(朱林繁). Chin. Phys. B, 2022, 31(8): 083401.
[8] Structural evolution and bandgap modulation of layered β-GeSe2 single crystal under high pressure
Hengli Xie(谢恒立), Jiaxiang Wang(王家祥), Lingrui Wang(王玲瑞), Yong Yan(闫勇), Juan Guo(郭娟), Qilong Gao(高其龙), Mingju Chao(晁明举), Erjun Liang(梁二军), and Xiao Ren(任霄). Chin. Phys. B, 2022, 31(7): 076101.
[9] SERS activity of carbon nanotubes modified by silver nanoparticles with different particle sizes
Xiao-Lei Zhang(张晓蕾), Jie Zhang(张洁), Yuan Luo(罗元), and Jia Ran(冉佳). Chin. Phys. B, 2022, 31(7): 077401.
[10] Switchable directional scattering based on spoof core—shell plasmonic structures
Yun-Qiao Yin(殷允桥), Hong-Wei Wu(吴宏伟), Shu-Ling Cheng(程淑玲), and Zong-Qiang Sheng(圣宗强). Chin. Phys. B, 2022, 31(5): 054101.
[11] Oscillator strength study of the excitations of valence-shell of C2H2 by high-resolution inelastic x-ray scattering
Qiang Sun(孙强), Ya-Wei Liu(刘亚伟), Yuan-Chen Xu(徐远琛), Li-Han Wang(王礼涵), Tian-Jun Li(李天钧), Shu-Xing Wang(汪书兴), Ke Yang(杨科), and Lin-Fan Zhu(朱林繁). Chin. Phys. B, 2022, 31(5): 053401.
[12] Effects of Landau damping and collision on stimulated Raman scattering with various phase-space distributions
Shanxiu Xie(谢善秀), Yong Chen(陈勇), Junchen Ye(叶俊辰), Yugu Chen(陈雨谷), Na Peng(彭娜), and Chengzhuo Xiao(肖成卓). Chin. Phys. B, 2022, 31(5): 055201.
[13] Small-angle neutron scattering study on the stability of oxide nanoparticles in long-term thermally aged 9Cr-oxide dispersion strengthened steel
Peng-Lin Gao(高朋林), Jian Gong(龚建), Qiang Tian(田强), Gung-Ai Sun(孙光爱), Hai-Yang Yan(闫海洋),Liang Chen(陈良), Liang-Fei Bai(白亮飞), Zhi-Meng Guo(郭志猛), and Xin Ju(巨新). Chin. Phys. B, 2022, 31(5): 056102.
[14] Improving the performance of a GaAs nanowire photodetector using surface plasmon polaritons
Xiaotian Zhu(朱笑天), Bingheng Meng(孟兵恒), Dengkui Wang(王登魁), Xue Chen(陈雪), Lei Liao(廖蕾), Mingming Jiang(姜明明), and Zhipeng Wei(魏志鹏). Chin. Phys. B, 2022, 31(4): 047801.
[15] Post-solitons and electron vortices generated by femtosecond intense laser interacting with uniform near-critical-density plasmas
Dong-Ning Yue(岳东宁), Min Chen(陈民), Yao Zhao(赵耀), Pan-Fei Geng(耿盼飞), Xiao-Hui Yuan(远晓辉), Quan-Li Dong(董全力), Zheng-Ming Sheng(盛政明), and Jie Zhang(张杰). Chin. Phys. B, 2022, 31(4): 045205.
No Suggested Reading articles found!