Please wait a minute...
Chin. Phys. B, 2015, Vol. 24(4): 045101    DOI: 10.1088/1674-1056/24/4/045101
PHYSICS OF GASES, PLASMAS, AND ELECTRIC DISCHARGES Prev   Next  

Experimental investigation of effects of airflows on plasma-assisted combustion actuator characteristics

Liu Xing-Jian (刘兴建), He Li-Ming (何立明), Yu Jin-Lu (于锦禄), Zhang Hua-Lei (张华磊)
Science and Technology on Plasma Dynamics Laboratory, Aeronautics and Astronautics Engineering College, Air Force Engineering University, Xi'an 710038, China
Abstract  The effects of the airflow on plasma-assisted combustion actuator (PACA) characteristics are studied in detail. The plasma is characterized electrically, as well as optically with a spectrometer. Our results show that the airflow has an obvious influence on the PACA characteristics. The breakdown voltage and vibrational temperature decrease, while the discharge power increases compared with the stationary airflow. The memory effect of metastable state species and the transportation characteristics of charged particles in microdischarge channel are the dominant causes for the variations of the breakdown voltage and discharge power, respectively, and the vibrational temperature calculated in this work can describe the electron energy of the dielectric barrier discharge plasma in PACA. These results offer new perspectives for the use of PACA in plasma-assisted combustion.
Keywords:  plasma-assisted combustion actuator      breakdown voltage      discharge power      vibrational temperature  
Received:  03 September 2014      Revised:  29 October 2014      Accepted manuscript online: 
PACS:  51.50.+v (Electrical properties)  
  52.77.-j (Plasma applications)  
  52.70.-m (Plasma diagnostic techniques and instrumentation)  
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 51436008, 50776100, and 51106179).
Corresponding Authors:  Liu Xing-Jian     E-mail:  lxjkgd@163.com

Cite this article: 

Liu Xing-Jian (刘兴建), He Li-Ming (何立明), Yu Jin-Lu (于锦禄), Zhang Hua-Lei (张华磊) Experimental investigation of effects of airflows on plasma-assisted combustion actuator characteristics 2015 Chin. Phys. B 24 045101

[1] Ulrich K 2003 Plasma Chem. Plasma P 23 3
[2] Chen J and Davidson J H 2002 Plasma Chem. Plasma P 22 495
[3] Pavon S, Dorier J L, Hollenstein Ch, Ott P and Leyland P 2007 J. Phys. D: Appl. Phys. 40 1733
[4] Igor Matveev and Svetlana Matveeva 2005 43rd AIAA Aerospace Sciences Meeting and Exhibit, January 10-13, 2005, Reno, Nevada, USA, p. 1191
[5] Lord W K, MacMartin D G and Tillman T G 2000 Fluids 2000, June 19-22, 2000, Denver, USA, p. 2234
[6] Lan Y D, He L M, Ding W and Wang F 2010 Acta Phys. Sin. 59 2617 (in Chinese)
[7] Yu J L, He L M, Ding W, Wang Y Q and Du C 2013 Chin. Phys. B 22 055201
[8] Zhao B B, He L M, Shen Y, Bai X F and Yu J L 2013 Spectrosc. Spectral Anal. 33 1171 (in Chinese)
[9] Wang F, Jiang C, Kuthi A and Gundersen M A 2004 42nd AIAA Aerospace Sciences Meeting and Exhibit, March 12-14, 2004, Reno, Nevada, USA, p. 834
[10] Cathey C, Wang F, Tang T, Kuthi A, Gundersen M, Sinibaldi J, Brophy C, Barbour E, Hanson R, Hoke J, Schauer F, Corrigan J and Yu J 2007 45th AIAA Aerospace Sciences Meeting and Exhibit, January 8-11, 2007, Reno, Nevada, USA, p. 443
[11] Mozingo J A 2004 "Evaluation of a Strut-Plasma Torch Combination as a Supersonic Igniter-Flameholder", Ph. D. Dissertation (Virginia: Virginia Polytechnic Institute and State University)
[12] Sergey L, Dmitry Y and Campbell C 2009 J. Propulsion Power 25 289
[13] Charles D, Cathey C and Tang T 2007 IEEE Trans. Plasma Sci. 35 1664
[14] Liu J B, Ronney P Wang F, Kuthi A and Gundersen M 2003 41st AIAA Aerospace Sciences Meeting and Exhibit, January 6-9, 2003, Reno, Nevada, USA, p. 877
[15] Becker K H 2005 Non-equilibrium Air Plasmas at Atmospheric Pressure (Series in Plasma Physics) (Bristol: Institute of Physics Publishing) p. 243
[16] Gherardi N and Massines F 2001 IEEE Trans. Plasma Sci. 29 536
[17] Forte M, Léger L, Pons J, Moreau E and Touchard G 2005 J. Electrostat. 64 215
[18] Wang Z, Ren C S, Nie Q Y and Wang D Z 2009 Plasma Sci. Technol. 11 177
[19] Luo H Y, Liang Z, Wang X X, Guan Z C and Wang L M 2008 J. Phys. D: Appl. Phys. 41 205205
[20] Enloe C L, McLaughlin T E, VanDyken R D, Kachner K D, Jumper E J, Corke T C, Post M and Haddad O 2004 AIAA J. 42 595
[21] Boeuf J P and Pitchford L C 2005 J. Appl. Phys. 97 103307
[22] Sublet A, Ding C, Dorier J L, Hollenstein Ch, Fayet P and Coursimault F 2006 Plasma Sources Sci. Technol. 15 627
[23] Wagner H E, Brandenburga R, Kozlovb K V, Sonnenfeldc A, Michela P and Behnke J F 2003 Vacuum 71 417
[24] Manley T C 1943 Trans. Electrochem. Soc. 84 127
[25] Li X C, Liu R F, Jia P Y and Kong L Q 2012 Acta Phys. Sin. 61 115205 (in Chinese)
[26] Pashaie B, Sankaranarayanan R and Dhali S K 1999 IEEE Trans. Plasma Sci. 27 22
[27] Xudong "Peter" Xua and Mark J K 1998 J. Appl. Phys. 84 4153
[28] Chirokov A, Gutsol A, Fridman A, Sieber K, Grace J and Robinson K 2005 IEEE Trans. Plasma Sci. 33 300
[29] Wagner H E, Yurgelenas Yu V and Brandenburg R 2005 Plasma Phys. Control Fusion 47 B641
[30] Nagorny V P 2007 J. Appl. Phys. 101 023302
[31] Luo H Y, Ran J X and Wang X X 2012 High Volt. Engin. 38 1661 (in Chinese)
[32] Liang Z, Guan Z C, Wang L M, Luo H Y and Wang X X 2010 Acta Phys. Sin. 59 8739 (in Chinese)
[33] Zhu Y F, Jia M, Cui W, Ling Y H and Wu Y 2013 High Volt. Engin. 39 1716 (in Chinese)
[34] Starikovskiy A and Aleksandrov N 2013 Prog. Energy Combust. Sci. 39 61
[35] Li X C, Liu R F, Chang Y Y and Zhao H H 2013 Spectrosc. Spectral Anal. 33 308 (in Chinese)
[1] Design optimization of high breakdown voltage vertical GaN junction barrier Schottky diode with high-K/low-K compound dielectric structure
Kuiyuan Tian(田魁元), Yong Liu(刘勇), Jiangfeng Du(杜江锋), and Qi Yu(于奇). Chin. Phys. B, 2023, 32(1): 017306.
[2] A 4H-SiC trench MOSFET structure with wrap N-type pillar for low oxide field and enhanced switching performance
Pei Shen(沈培), Ying Wang(王颖), and Fei Cao(曹菲). Chin. Phys. B, 2022, 31(7): 078501.
[3] Lateral β-Ga2O3 Schottky barrier diode fabricated on (-201) single crystal substrate and its temperature-dependent current-voltage characteristics
Pei-Pei Ma(马培培), Jun Zheng(郑军), Ya-Bao Zhang(张亚宝), Xiang-Quan Liu(刘香全), Zhi Liu(刘智), Yu-Hua Zuo(左玉华), Chun-Lai Xue(薛春来), and Bu-Wen Cheng(成步文). Chin. Phys. B, 2022, 31(4): 047302.
[4] Fast-switching SOI-LIGBT with compound dielectric buried layer and assistant-depletion trench
Chunzao Wang(王春早), Baoxing Duan(段宝兴), Licheng Sun(孙李诚), and Yintang Yang(杨银堂). Chin. Phys. B, 2022, 31(4): 047304.
[5] Modeling of high permittivity insulator structure with interface charge by charge compensation
Zhi-Gang Wang(汪志刚), Yun-Feng Gong(龚云峰), and Zhuang Liu(刘壮). Chin. Phys. B, 2022, 31(2): 028501.
[6] Terminal-optimized 700-V LDMOS with improved breakdown voltage and ESD robustness
Jie Xu(许杰), Nai-Long He(何乃龙), Hai-Lian Liang(梁海莲), Sen Zhang(张森), Yu-De Jiang(姜玉德), and Xiao-Feng Gu(顾晓峰). Chin. Phys. B, 2021, 30(6): 067303.
[7] Design and simulation of AlN-based vertical Schottky barrier diodes
Chun-Xu Su(苏春旭), Wei Wen(温暐), Wu-Xiong Fei(费武雄), Wei Mao(毛维), Jia-Jie Chen(陈佳杰), Wei-Hang Zhang(张苇杭), Sheng-Lei Zhao(赵胜雷), Jin-Cheng Zhang(张进成), and Yue Hao(郝跃). Chin. Phys. B, 2021, 30(6): 067305.
[8] A super-junction SOI-LDMOS with low resistance electron channel
Wei-Zhong Chen(陈伟中), Yuan-Xi Huang(黄元熙), Yao Huang(黄垚), Yi Huang(黄义), and Zheng-Sheng Han(韩郑生). Chin. Phys. B, 2021, 30(5): 057303.
[9] Improved 4H-SiC UMOSFET with super-junction shield region
Pei Shen(沈培), Ying Wang(王颖), Xing-Ji Li(李兴冀), Jian-Qun Yang(杨剑群), Cheng-Hao Yu(于成浩), and Fei Cao(曹菲). Chin. Phys. B, 2021, 30(5): 058502.
[10] Novel Si/SiC heterojunction lateral double-diffused metal-oxide semiconductor field-effect transistor with p-type buried layer breaking silicon limit
Baoxing Duan(段宝兴), Xin Huang(黄鑫), Haitao Song (宋海涛), Yandong Wang(王彦东), and Yintang Yang(杨银堂). Chin. Phys. B, 2021, 30(4): 048503.
[11] Novel fast-switching LIGBT with P-buried layer and partial SOI
Haoran Wang(王浩然), Baoxing Duan(段宝兴), Licheng Sun(孙李诚), and Yintang Yang(杨银堂). Chin. Phys. B, 2021, 30(2): 027302.
[12] Simulation study of high voltage GaN MISFETs with embedded PN junction
Xin-Xing Fei(费新星), Ying Wang(王颖), Xin Luo(罗昕), Cheng-Hao Yu(于成浩). Chin. Phys. B, 2020, 29(8): 080701.
[13] Variable-K double trenches SOI LDMOS with high-concentration P-pillar
Lijuan Wu(吴丽娟), Lin Zhu(朱琳), Xing Chen(陈星). Chin. Phys. B, 2020, 29(5): 057701.
[14] Numerical and analytical investigations for the SOI LDMOS with alternated high-k dielectric and step doped silicon pillars
Jia-Fei Yao(姚佳飞), Yu-Feng Guo(郭宇锋), Zhen-Yu Zhang(张振宇), Ke-Meng Yang(杨可萌), Mao-Lin Zhang(张茂林), Tian Xia(夏天). Chin. Phys. B, 2020, 29(3): 038503.
[15] Breakdown voltage enhancement in GaN channel and AlGaN channel HEMTs using large gate metal height
Zhong-Xu Wang(王中旭), Lin Du(杜林), Jun-Wei Liu(刘俊伟), Ying Wang(王颖), Yun Jiang(江芸), Si-Wei Ji(季思蔚), Shi-Wei Dong(董士伟), Wei-Wei Chen(陈伟伟), Xiao-Hong Tan(谭骁洪), Jin-Long Li(李金龙), Xiao-Jun Li(李小军), Sheng-Lei Zhao(赵胜雷), Jin-Cheng Zhang(张进成), Yue Hao(郝跃). Chin. Phys. B, 2020, 29(2): 027301.
No Suggested Reading articles found!