Integral cross sections for electron impact excitations of argon and carbon dioxide
Shu-Xing Wang(汪书兴) and Lin-Fan Zhu(朱林繁)†
Hefei National Research Center for Physical Sciences at Microscale and Department of Modern Physics, University of Science and Technology of China, Hefei 230026, China
Abstract Electron-impact excitation integral cross sections play an important role in understanding the energy transfer processes in many applied physics. Practical applications require integral cross sections in a wide collision energy range from the excitation threshold to several keV. The recently developed BE-scaling method is able to meet the demands of integral cross sections for dipole-allowed transitions while the prerequisite relies on the accurate generalized oscillator strengths. Fast electron and x-ray scatterings are the conventional experimental techniques to approach the generalized oscillator strengths, and the joint study by both methods can provide credible cross-checks. The validated generalized oscillator strengths can then be used to extrapolate optical oscillator strengths by fitting the data with the Lassettre formula. The fitted curve also enables the integration of generalized oscillator strengths over the whole momentum transfer region to obtain the BE-scaled integral excitation cross sections. Here, experimental measurements by both fast electron and x-ray scattering of argon and carbon dioxide are reviewed. The integral cross sections for some low-lying states are derived from the cross-checked generalized oscillator strengths for the first time. The integral cross sections presented in this paper are openly available at https://doi.org/10.11922/sciencedb.01466.
Fund: Project supported by the National Key Research and Development Program of China (Grant No. 2017YFA0402300), the National Natural Science Foundation of China (Grant Nos. U1932207 and 12104437), and the Strategic Priority Research Program of the Chinese Academy of Sciences (Grant No. XDB34000000). The financial support from the Heavy Ion Research Facility in Lanzhou (HIRFL) is also acknowledged.
Shu-Xing Wang(汪书兴) and Lin-Fan Zhu(朱林繁) Integral cross sections for electron impact excitations of argon and carbon dioxide 2022 Chin. Phys. B 31 083401
[1] Gangwar R K, Sharma L, Srivastava R and Stauffer A D 2012 J. Appl. Phys.111 053307 [2] Samukawa S, Hori M, Rauf S, Tachibana K, Bruggeman P, Kroesen G, Whitehead J C, Murphy A B, Gutsol A F, Starikovskaia S, Kortshagen U, Boeuf J P, Sommerer T J, Kushner M J, Czarnetzki U and Mason N 2012 J. Phys. D:Appl. Phys.45 253001 [3] Bartschat K and Kushner M J 2016 Proc. Natl. Acad. Sci. USA113 7026 ISSN 0027-8424 [4] Bartschat K 2018 J. Phys. B:At. Mol. Opt. Phys.51 132001 [5] Zhu X M, Tsankov T V, Luggenhölscher D and Czarnetzki U 2015 J. Phys. D:Appl. Phys.48 085201 [6] Gangwar R K, Dipti, Srivastava R and Stafford L 2016 Plasma Sources Sci. Technol.25 035025 [7] Itikawa Y 2007 Molecular processes in plasmas (Springer) [8] Carbone E, Graef W, Hagelaar G, Boer D, Hopkins M M, Stephens J C, Yee B T, Pancheshnyi S, van Dijk J and Pitchford L 2021 Atoms9 [9] Read F H and Channing J M 1996 Rev. Sci. Instrum.67 2372 [10] Inokuti M 1971 Rev. Mod. Phys.43 297 [11] Wang S X and Zhu L F 2020 Matter Radiat. Extremes5 054201 [12] Kim Y K 2001 Phys. Rev. A64 032713 [13] Kim Y K 2007 J. Chem. Phys.126 064305 [14] Tanaka H, Brunger M J, Campbell L, Kato H, Hoshino M and Rau A R P 2016 Rev. Mod. Phys. 88 025004 [15] Xie B P, Zhu L F, Yang K, Zhou B, Hiraoka N, Cai Y Q, Yao Y, Wu C Q, Wang E L and Feng D L 2010 Phys. Rev. A82 032501 [16] Bradley J A, Seidler G T, Cooper G, Vos M, Hitchcock A P, Sorini A P, Schlimmer C and Nagle K P 2010 Phys. Rev. Lett.105 053202 [17] Zhu L F, Wang L S, Xie B P, Yang K, Hiraoka N, Cai Y Q and Feng D L 2011 J. Phys. B:At. Mol. Opt. Phys. 44 025203 [18] Kang X, Xu L Q, Liu Y W, Wang S X, Yang K, Peng Y G, Ni D D, Hiraoka N, Tsuei K D and Zhu L F 2019 J. Phys. B:At. Mol. Opt. Phys.52 245202 [19] Chen T, Liu Y W, Xu Y C and Zhu L F 2020 J. Phys. B:At. Mol. Opt. Phys.53 085201 [20] Lassettre E N 1965 J. Chem. Phys.43 4479 [21] Lassettre E N, Skerbele A and Dillon M A 1969 J. Chem. Phys.50 1829 [22] Ni D D, Xu L Q, Liu Y W, Yang K, Hiraoka N, Tsuei K D and Zhu L F 2017 Phys. Rev. A 96 012518 [23] Liu Y W, Xu L Q, Xiong T, Chen X, Yang K, Hiraoka N, Tsuei K D and Zhu L F 2018 Astrophys. J. Suppl. Ser.238 26 [24] Xu X, Xu L Q, Xiong T, Chen T, Liu Y W and Zhu L F 2018 J. Chem. Phys.148 044311 [25] Xu Y C, Liu Y W, Du X J, Xu L Q and Zhu L F 2019 Phys. Chem. Chem. Phys.21 17433 [26] Ji Q, Wu S L, Feng R F, Zhang X J, Zhu L F, Zhong Z P, Xu K Z and Zheng Y 1996 Phys. Rev. A54 2786 [27] Zhu L F, Cheng H D, Yuan Z S, Liu X J, Sun J M and Xu K Z 2006 Phys. Rev. A73 042703 [28] Zhu L F, Yuan H, Jiang W C, Zhang F X, Yuan Z S, Cheng H D and Xu K Z 2007 Phys. Rev. A 75 032701 [29] Kang X, Yang K, Liu Y W, Xu W Q, Hiraoka N, Tsuei K D, Zhang P F and Zhu L F 2012 Phys. Rev. A86 022509 [30] Chen Z, Msezane A Z and Amusia M Y 1999 Phys. Rev. A60 5115 [31] Amusia M Y, Chernysheva L V, Felfli Z and Msezane A Z 2003 Phys. Rev. A67 022703 [32] Vos M, McEachran R P and Zhu L F 2014 J. Phys. B:At. Mol. Opt. Phys.47 055201 [33] Gao X, Jin R, Zeng D L, Han X Y, Yan J and Li J M 2015 Phys. Rev. A92 052712 [34] Chan W F, Cooper G and Brion C E 1991 Phys. Rev. A44 186 [35] Li G P, Takayanagi T, Wakiya K, Suzuki H, Ajiro T, Yagi S, Kano S S and Takuma H 1988 Phys. Rev. A38 1240 [36] Chan W F, Cooper G, Guo X, Burton G R and Brion C E 1992 Phys. Rev. A46 149 [37] Wu S L, Zhong Z P, Feng R F, Xing S L, Yang B X and Xu K Z 1995 Phys. Rev. A51 4494 [38] Xu X, Ni D D, Kang X, Liu Y W, Xu L Q, Yang K, Hiraoka N, Tsuei K D and Zhu L F 2016 J. Phys. B:At. Mol. Opt. Phys.49 064010 [39] Lawrence G M 1968 Phys. Rev.175 40 [40] Federman S R, Beideck D J, Schectman R M and York D G 1992 Astrophys. J. 401 367 [41] Westerveld W, Mulder T and van Eck J 1979 J. Quant. Spectrosc. Radiat. Transf.21 533 [42] Tsurubuchi S, Watanabe K and Arikawa T 1990 J. Phys. Soc. Jpn.59 497 [43] Ligtenberg R C G, van der Burgt P J M, Renwick S P, Westerveld W B and Risley J S 1994 Phys. Rev. A49 2363 [44] Gibson N D and Risley J S 1995 Phys. Rev. A52 4451 [45] Stacey D and Vaughan J 1964 Phys. Lett.11 105 [46] Lewis E L 1967 Proc. Phys. Prog.92 817 [47] Copley G and Camm D 1974 J. Quant. Spectrosc. Radiat. Transf.14 899 [48] Vallee O, Ranson P and Chapelle J 1977 J. Quant. Spectrosc. Radiat. Transf.18 327 [49] Avgoustoglou E N and Beck D R 1998 Phys. Rev. A57 4286 [50] Zatsarinny O and Bartschat K 2009 Phys. Scr.T134 014020 [51] Gargioni E and Grosswendt B 2008 Rev. Mod. Phys.80 451 [52] Yanguas-Gil Á, Cotrino J and Alves L L 2005 J. Phys. D:Appl. Phys.38 1588 [53] Wang S X, Du X J, Sun Q, Liu Y W, Qi D G and Zhu L F 2021 J. Quant. Spectrosc. Radiat. Transf.227 107988 [54] Chutjian A and Cartwright D C 1981 Phys. Rev. A23 2178 [55] Filipovic D M, Marinkovic B P, Pejcev V and Vuskovic L 2000 J. Phys. B:At. Mol. Opt. Phys.33 677 [56] Filipovic D M, Marinkovic B P, Pejcev V and Vuskovic L 2000 J. Phys. B:At. Mol. Opt. Phys.33 2081 [57] Khakoo M A, Vandeventer P, Childers J G, Kanik I, Fontes C J, Bartschat K, Zeman V, Madison D H, Saxena S, Srivastava R and Stauffer A D 2003 J. Phys. B:At. Mol. Opt. Phys.37 247 [58] Mochizuki Y, Murai H, Kato H, Hoshino M and Tanaka H 2015 J. Phys. Conf. Ser.635 052048 [59] Zatsarinny O, Wang Y and Bartschat K 2014 Phys. Rev. A89 022706 [60] Pitchford L C, Alves L L, Bartschat K, Biagi S F, Bordage M C, Phelps A V, Ferreira C M, Hagelaar G J M, Morgan W L, Pancheshnyi S, Puech V, Stauffer A and Zatsarinny O 2013 J. Phys. D:Appl. Phys.46 334001 [61] Marucha A M, Kariuki P K, Okumu J and Singh C S 2021 J. Phys. Commun.5 075011 [62] Lee C M and Lu K T 1973 Phys. Rev. A8 1241 [63] Lee C M 1974 Phys. Rev. A10 584 [64] Chilton J E and Lin C C 1999 Phys. Rev. A60 3712 [65] Morrison M A and Greene A E 1978 J. Geo. Res. Space Phys.83 1172 [66] Klump K N and Lassettre E N 1978 J. Electron Spectrosc. Relat. Phenomena14 215 [67] Green M A, Teubner P J O, Campbell L, Brunger M J, Hoshino M, Ishikawa T, Kitajima M, Tanaka H, Itikawa Y, Kimura M and Buenker R J 2002 J. Phys. B:At. Mol. Opt. Phys.35 567 [68] Watanabe N, Hirayama T, Suzuki D and Takahashi M2013 J. Chem. Phys.138 184311 [69] Buenker R J, Honigmann M, Liebermann H P and Kimura M 2000 J. Chem. Phys.113 1046 [70] Tian H C, Xu L Q and Zhu L F 2018 Chin. Phys. Lett.27 043101 [71] Chan W, Cooper G and Brion C 1993 Chem. Phys.178 401 [72] Padial N, Csanak G, McKoy B V and Langhoff P W 1981 Phys. Rev. A 23 218 [73] McCurdy C W and McKoy V 1974 J. Chem. Phys.61 2820 [74] Kawahara H, Kato H, Hoshino M, Tanaka H, Campbell L and Brunger M J 2008 J. Phys. B:At. Mol. Opt. Phys. 41 085203 [75] Meyer V D and Lassettre E N 1965 J. Chem. Phys.42 3436
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.