Please wait a minute...
Chin. Phys. B, 2022, Vol. 31(4): 045205    DOI: 10.1088/1674-1056/ac46c5
PHYSICS OF GASES, PLASMAS, AND ELECTRIC DISCHARGES Prev   Next  

Post-solitons and electron vortices generated by femtosecond intense laser interacting with uniform near-critical-density plasmas

Dong-Ning Yue(岳东宁)1,2,3, Min Chen(陈民)2,3,†, Yao Zhao(赵耀)4, Pan-Fei Geng(耿盼飞)2,3, Xiao-Hui Yuan(远晓辉)2,3, Quan-Li Dong(董全力)1,3, Zheng-Ming Sheng(盛政明)2,3,5, and Jie Zhang(张杰)2,3,5
1 School of Sciences, Harbin Institute of Technology at Weihai, Weihai 264209, China;
2 Key Laboratory for Laser Plasmas(Ministry of Education), School of Physics and Astronomy, Shanghai Jiao Tong University, Shanghai 200240, China;
3 Collaborative Innovation Center of IFSA, Shanghai Jiao Tong University, Shanghai 200240, China;
4 Key Laboratory of High Power Laser and Physics, Shanghai Institute of Optics and Fine Mechanics, Chinese Academy of Sciences, Shanghai 201800, China;
5 Tsung-Dao Lee Institute, Shanghai 200240, China
Abstract  Generation of nonlinear structures, such as stimulated Raman side scattering waves, post-solitons and electron vortices, during ultra-short intense laser pulse transportation in near-critical-density (NCD) plasmas is studied by using multi-dimensional particle-in-cell (PIC) simulations. In two-dimensional geometries, both P- and S-polarized laser pulses are used to drive these nonlinear structures and to check the polarization effects on them. In the S-polarized case, the scattered waves can be captured by surrounding plasmas leading to the generation of post-solitons, while the main pulse excites convective electric currents leading to the formation of electron vortices through Kelvin-Helmholtz instability (KHI). In the P-polarized case, the scattered waves dissipate their energy by heating surrounding plasmas. Electron vortices are excited due to the hosing instability of the drive laser. These polarization dependent physical processes are reproduced in two different planes perpendicular to the laser propagation direction in three-dimensional simulation with linearly polarized laser driver. The current work provides inspiration for future experiments of laser-NCD plasma interactions.
Keywords:  stimulated Raman side scattering      near-critical-density plasmas      electron vortices      post-solitons  
Received:  12 December 2021      Revised:  21 December 2021      Accepted manuscript online:  29 December 2021
PACS:  52.25.Gj (Fluctuation and chaos phenomena)  
  52.35.-g (Waves, oscillations, and instabilities in plasmas and intense beams)  
  52.65.-y (Plasma simulation)  
  47.75.+f (Relativistic fluid dynamics)  
Fund: The authors would like to acknowledge the OSIRIS Consortium, consisting of UCLA and IST (Lisbon, Portugal) for the use of OSIRIS and the visXD framework. Project supported by the National Natural Science Foundation of China (Grant Nos. 11991074, 11774227, 12005287, and 12135009), NSAF of China (Grant No. U1930111), the Natural Science Foundation of Shandong Province, China (Grant No. ZR2019ZD44), and the Strategic Priority Research Program of Chinese Academy of Sciences (Grant Nos. XDA25000000 and XDA25050800).
Corresponding Authors:  Min Chen     E-mail:  minchen@sjtu.edu.cn

Cite this article: 

Dong-Ning Yue(岳东宁), Min Chen(陈民), Yao Zhao(赵耀), Pan-Fei Geng(耿盼飞), Xiao-Hui Yuan(远晓辉), Quan-Li Dong(董全力), Zheng-Ming Sheng(盛政明), and Jie Zhang(张杰) Post-solitons and electron vortices generated by femtosecond intense laser interacting with uniform near-critical-density plasmas 2022 Chin. Phys. B 31 045205

[1] Tajima T and Dawson J M 1979 Phys. Rev. Lett. 43 267
[2] Chen M, Liu F, Li B Y, Weng S M, Chen L M, Sheng Z M and Zhang J 2020 High Power Laser Part. Beams 32 092001 (in Chinese)
[3] Wu X Z, Shou Y R, Gong Z, Zhao Y Y, Zhu K, Yang G, Lu H Y, Lin C, Ma W J, Chen J E and Yan X Q 2020 High Power Laser Part. Beams 32 092002 (in Chinese)
[4] Ma W J, Liu Z P, Wang P J, Zhao J R and Yan X Q 2021 Acta Phys. Sin. 70 084102 (in Chinese)
[5] Gibbon P 1996 Phys. Rev. Lett. 76 50
[6] Thaury C, Quéré F, Geindre J P, Levy A, Ceccotti T, Monot P, Bougeard M, Réau F, D'Oliveira P, Audebert P, Marjoribanks R and Martin P 2007 Nat. Phys. 3 424
[7] Naumova N M, Bulanov S V, Esirkepov T Zh, Farina D, Nishihara K, Pegoraro F, Ruhl H and Sakharov A S 2001 Phys. Rev. Lett. 87 185004
[8] Esirkepov T, Nishihara K, Bulanov S V and Pegoraro F 2002 Phys. Rev. Lett. 89 275002
[9] Bulanov S V, Lontano M, Esirkepov T Zh, Pegoraro F and Pukhov A M 1996 Phys. Rev. Lett. 76 3562
[10] Naumova N M, Koga J, K. Nakajima, Tajima T, Esirkepov T Zh, Bulanov S V and Pegoraro F 2001 Phys. Plasmas 8 4149
[11] Bayart E, Flacco A, Delmas O, Pommarel L, Levy D, Cavallone M, Megnin-Chanet F, Deutsch E and Malka V 2019 Sci. Rep. 9 10132
[12] Hofmann K M, Masood U, Pawelke J and Wilkens J J 2015 Med. Phys. 42 5120
[13] Zhao Y, Zheng J, Chen M, Yu L L, Weng S M, Ren C, Liu C S and Sheng Z M 2014 Phys. Plasmas 21 112114
[14] Borghesi M, Bulanov S, Campbell D H, Clarke R J, Esirkepov T Zh, Galimberti M, Gizzi L A, MacKinnon A J, Naumova N M, Pegoraro F, Ruhl H, Schiavi A and Willi O 2002 Phys. Rev. Lett. 88 135002
[15] Yue D N, Chen M, Geng P F, Yuan X H, Weng S M, Bulanov S S, Bulanov S V, Mima K, Sheng Z M and Zhang J 2021 Phys. Plasmas 28 042303
[16] Yue D N, Chen M, Geng P F, Yuan X H, Sheng Z M, Zhang J, Dong Q L, Das A and Kumar G R 2021 Plasma Phys. Control. Fusion 63 075009
[17] Tabak M, Hammer J, Glinsky M E, Kruer W L, Wilks S C, Woodworth J, Campbell E M, Perry M D and Mason R J 1994 Phys. Plasmas 1 1626
[18] Sheng Z M, Meyer-ter-Vehn J and Pukhov A 1998 Phys. Plasmas 5 3764
[19] Nakamura T, Bulanov S V, Zh E T and Kando M 2010 Phys. Rev. Lett. 105 135002
[20] Helle M H, Gordon D F, Kaganovich D, Chen Y, Palastro J P and Ting A 2016 Phys. Rev. Lett. 117 165001
[21] Sarri G, Singh D K, Davies J R, Fiuza F, Lancaster K L, Clark E L, Hassan S, Jiang J, Kageiwa N, Lopes N, Rehman A, Russo C, Scott R H H, Tanimoto T, Najmudin Z, Tanaka K A, Tatarakis M, Borghesi M and Norreys P A 2010 Phys. Rev. Lett. 105 175007
[22] Romagnani L, Bigongiari A, Kar S, Bulanov S V, Cecchetti C A, Esirkepov T Zh, Galimberti M, Jung R, Liseykina T V, Macchi A, Osterholz J, Pegoraro F, Willi O and Borghesi M 2010 Phys. Rev. Lett. 105 175002
[23] Fournier K B, Constantin C, Poco J, Miller M C, Back C A, Suter L J, Satcher J, Davis J and Grun J 2004 Phys. Rev. E 92 165005
[24] Li Y T, Sheng Z M, Ma Y Y, Jin Z, Zhang J, Chen Z L, Kodama R, Matsuoka T, Tampo M, Tanaka K A, Tsutsumi T, Yabuuchi T, Du K, Zhang H Q, Zhang L and Tang Y J 2005 Phys. Rev. E 72 066404
[25] Fonseca R A, Silva L O, Tsung F S, Decyk V K, Lu W, Ren C, Mori W B, Deng S, Lee S, Katsouleas T and Adam J C 2002 Lect. Notes Comput. Sci. 2331 342
[26] Zhao Y 2018 Studies of Laser Bandwidth Effects on Suppression of Parametric Instabilities in Laser Plasma Interactions (Ph. D. Dissertation) (Shanghai:Shanghai Jiao Tong University) (in Chinese)
[27] Li G, Mori W B and Ren C 2013 Phys. Rev. Lett. 110 155002
[28] Liu Y, Klimo O, Esirkepov T Zh, Bulanov S V, Gu Y, Weber S and Korn G 2015 Phys. Plasmas 22 112302
[29] Park J, Bulanov S S, Bin J, Ji Q, Steinke S, Vay J L, Geddes C G R, Schroeder C B, Leemans W P, Schenkel T and Esarey E 2019 Phys. Plasmas 26 103108
[1] Fluctuation of arc plasma in arc plasma torch with multiple cathodes
Zelong Zhang(张泽龙), Cheng Wang(王城), Qiang Sun(孙强), Weidong Xia(夏维东). Chin. Phys. B, 2019, 28(9): 095201.
[2] Investigation on the drives of the poloidal flow in the ohmic and biased electrode experiments
Yi Yu(余羿), Tao Lan(兰涛), Min Xu(许敏), Yizhi Wen(闻一之). Chin. Phys. B, 2019, 28(3): 035202.
[3] Relativistic correction of (v/c)2 to the collective Thomson scattering for high-temperature high-density plasma
Jiang Chen-Fan-Fu(蒋陈凡夫), Zheng Jian(郑坚), and Zhao Bin(赵斌) . Chin. Phys. B, 2011, 20(9): 095202.
[4] Observation of chaotic ELMs in HL-2A tokamak
Huang Yuan(黄渊), Nie Lin(聂林), Yu De-Liang(余德良), Liu Chun-Hua(刘春华), Feng Zhen(冯震), and Duan Xu-Ru(段旭如). Chin. Phys. B, 2011, 20(5): 055201.
[5] Intermittency of the density fluctuations and its influence on the radial transport in the boundary of J-TEXT
Zhu Meng-Zhou(朱孟周), Zhuang Ge(庄革), Wang Zhi-Jiang(王之江), and Pan Yuan(潘垣). Chin. Phys. B, 2011, 20(2): 025204.
[6] Electron temperature fluctuation in the HT-7 Tokamak plasma observed by electron cyclotron emission imaging
Xu Xiao-Yuan(徐小圆), Wang Jun(王俊), Yu Yi(余弈), Wen Yi-Zhi(闻一之), Yu Chang-Xuan(俞昌旋), Liu Wan-Dong(刘万东), Wan Bao-Nian(万宝年), Gao Xiang(高翔), N. C. Luhmann, C. W. Domier, Jian Wang(王剑), Z. G. Xia(夏正刚), and Zuowei Shen(申作玮). Chin. Phys. B, 2009, 18(3): 1153-1160.
[7] The instability of dust acoustic waves in inhomogeneous dusty plasmas with non-adiabatic dust charge fluctuation
Zhang Li-Ping(张丽萍) and Xue Ju-Kui(薛具奎). Chin. Phys. B, 2008, 17(7): 2594-2599.
[8] Experimental study on imploding characteristics of wire-array Z pinches on Qiangguang-1 facility
Wang Zhen(王真), Xu Rong-Kun(徐荣昆), Yang Jian-Lun(杨建伦), Hua Xin-Sheng(华欣生), Li Lin-Bo(李林波), Xu Ze-Ping(许泽平), Ning Jia-Min(宁家敏), and Song Feng-Jun(宋凤军). Chin. Phys. B, 2007, 16(3): 772-777.
[9] Thomson scattering off a pair (electron--positron) plasma
Zheng Jian (郑坚). Chin. Phys. B, 2006, 15(5): 1028-1034.
[10] Runaway electrons as a diagnostic of plasma internal magnetic fluctuations
Zheng Yong-Zhen (郑永真), Ding Xuan-Tong (丁玄同), Li Wen-Zhong (郦文忠). Chin. Phys. B, 2006, 15(5): 1035-1040.
[11] The instability of electrostatic wave in a magnetized dusty plasma with nonadiabatic dust charge fluctuation
Zhang Li-Ping (张丽萍), Xue Ju-Kui (薛具奎). Chin. Phys. B, 2005, 14(10): 2052-2060.
[12] Measurements of Reynolds stress and turbulence in the boundary plasma of the HT-7 tokamak
Song Mei (宋梅), Wan Bao-Nian (万宝年), Xu Guo-Sheng (徐国盛). Chin. Phys. B, 2004, 13(3): 369-372.
[13] Controlling chaos by a delayed continuous feedback in a gas discharge plasma
Huang Wei (黄巍), Yu Chang-Xuan (俞昌旋), Zheng Jian (郑坚), Xie Jin-Lin (谢锦林), Liu Wan-Dong (刘万东), Feng Dong-Lai (封东来), Ding Wei-Xing (丁卫星). Chin. Phys. B, 2004, 13(11): 1913-1917.
[14] The KP and ZK equations for electrostatic waves with grain charge fluctuation
Xue Ju-Kui (薛具奎), Lang He (郎和). Chin. Phys. B, 2004, 13(1): 60-64.
[15] Observation of intermittency in edge plasma of SUNIST tokamak
Wang Wen-Hao (王文浩), He Ye-Xi (何也熙), Gao Zhe (高喆), Zeng Li (曾立), Zhang Guo-Ping (张国平), Xie Li-Feng (解丽凤), Feng Chun-Hua (冯春华). Chin. Phys. B, 2004, 13(12): 2091-2096.
No Suggested Reading articles found!