PHYSICS OF GASES, PLASMAS, AND ELECTRIC DISCHARGES |
Prev
Next
|
|
|
Post-solitons and electron vortices generated by femtosecond intense laser interacting with uniform near-critical-density plasmas |
Dong-Ning Yue(岳东宁)1,2,3, Min Chen(陈民)2,3,†, Yao Zhao(赵耀)4, Pan-Fei Geng(耿盼飞)2,3, Xiao-Hui Yuan(远晓辉)2,3, Quan-Li Dong(董全力)1,3, Zheng-Ming Sheng(盛政明)2,3,5, and Jie Zhang(张杰)2,3,5 |
1 School of Sciences, Harbin Institute of Technology at Weihai, Weihai 264209, China; 2 Key Laboratory for Laser Plasmas(Ministry of Education), School of Physics and Astronomy, Shanghai Jiao Tong University, Shanghai 200240, China; 3 Collaborative Innovation Center of IFSA, Shanghai Jiao Tong University, Shanghai 200240, China; 4 Key Laboratory of High Power Laser and Physics, Shanghai Institute of Optics and Fine Mechanics, Chinese Academy of Sciences, Shanghai 201800, China; 5 Tsung-Dao Lee Institute, Shanghai 200240, China |
|
|
Abstract Generation of nonlinear structures, such as stimulated Raman side scattering waves, post-solitons and electron vortices, during ultra-short intense laser pulse transportation in near-critical-density (NCD) plasmas is studied by using multi-dimensional particle-in-cell (PIC) simulations. In two-dimensional geometries, both P- and S-polarized laser pulses are used to drive these nonlinear structures and to check the polarization effects on them. In the S-polarized case, the scattered waves can be captured by surrounding plasmas leading to the generation of post-solitons, while the main pulse excites convective electric currents leading to the formation of electron vortices through Kelvin-Helmholtz instability (KHI). In the P-polarized case, the scattered waves dissipate their energy by heating surrounding plasmas. Electron vortices are excited due to the hosing instability of the drive laser. These polarization dependent physical processes are reproduced in two different planes perpendicular to the laser propagation direction in three-dimensional simulation with linearly polarized laser driver. The current work provides inspiration for future experiments of laser-NCD plasma interactions.
|
Received: 12 December 2021
Revised: 21 December 2021
Accepted manuscript online: 29 December 2021
|
PACS:
|
52.25.Gj
|
(Fluctuation and chaos phenomena)
|
|
52.35.-g
|
(Waves, oscillations, and instabilities in plasmas and intense beams)
|
|
52.65.-y
|
(Plasma simulation)
|
|
47.75.+f
|
(Relativistic fluid dynamics)
|
|
Fund: The authors would like to acknowledge the OSIRIS Consortium, consisting of UCLA and IST (Lisbon, Portugal) for the use of OSIRIS and the visXD framework. Project supported by the National Natural Science Foundation of China (Grant Nos. 11991074, 11774227, 12005287, and 12135009), NSAF of China (Grant No. U1930111), the Natural Science Foundation of Shandong Province, China (Grant No. ZR2019ZD44), and the Strategic Priority Research Program of Chinese Academy of Sciences (Grant Nos. XDA25000000 and XDA25050800). |
Corresponding Authors:
Min Chen
E-mail: minchen@sjtu.edu.cn
|
Cite this article:
Dong-Ning Yue(岳东宁), Min Chen(陈民), Yao Zhao(赵耀), Pan-Fei Geng(耿盼飞), Xiao-Hui Yuan(远晓辉), Quan-Li Dong(董全力), Zheng-Ming Sheng(盛政明), and Jie Zhang(张杰) Post-solitons and electron vortices generated by femtosecond intense laser interacting with uniform near-critical-density plasmas 2022 Chin. Phys. B 31 045205
|
[1] Tajima T and Dawson J M 1979 Phys. Rev. Lett. 43 267 [2] Chen M, Liu F, Li B Y, Weng S M, Chen L M, Sheng Z M and Zhang J 2020 High Power Laser Part. Beams 32 092001 (in Chinese) [3] Wu X Z, Shou Y R, Gong Z, Zhao Y Y, Zhu K, Yang G, Lu H Y, Lin C, Ma W J, Chen J E and Yan X Q 2020 High Power Laser Part. Beams 32 092002 (in Chinese) [4] Ma W J, Liu Z P, Wang P J, Zhao J R and Yan X Q 2021 Acta Phys. Sin. 70 084102 (in Chinese) [5] Gibbon P 1996 Phys. Rev. Lett. 76 50 [6] Thaury C, Quéré F, Geindre J P, Levy A, Ceccotti T, Monot P, Bougeard M, Réau F, D'Oliveira P, Audebert P, Marjoribanks R and Martin P 2007 Nat. Phys. 3 424 [7] Naumova N M, Bulanov S V, Esirkepov T Zh, Farina D, Nishihara K, Pegoraro F, Ruhl H and Sakharov A S 2001 Phys. Rev. Lett. 87 185004 [8] Esirkepov T, Nishihara K, Bulanov S V and Pegoraro F 2002 Phys. Rev. Lett. 89 275002 [9] Bulanov S V, Lontano M, Esirkepov T Zh, Pegoraro F and Pukhov A M 1996 Phys. Rev. Lett. 76 3562 [10] Naumova N M, Koga J, K. Nakajima, Tajima T, Esirkepov T Zh, Bulanov S V and Pegoraro F 2001 Phys. Plasmas 8 4149 [11] Bayart E, Flacco A, Delmas O, Pommarel L, Levy D, Cavallone M, Megnin-Chanet F, Deutsch E and Malka V 2019 Sci. Rep. 9 10132 [12] Hofmann K M, Masood U, Pawelke J and Wilkens J J 2015 Med. Phys. 42 5120 [13] Zhao Y, Zheng J, Chen M, Yu L L, Weng S M, Ren C, Liu C S and Sheng Z M 2014 Phys. Plasmas 21 112114 [14] Borghesi M, Bulanov S, Campbell D H, Clarke R J, Esirkepov T Zh, Galimberti M, Gizzi L A, MacKinnon A J, Naumova N M, Pegoraro F, Ruhl H, Schiavi A and Willi O 2002 Phys. Rev. Lett. 88 135002 [15] Yue D N, Chen M, Geng P F, Yuan X H, Weng S M, Bulanov S S, Bulanov S V, Mima K, Sheng Z M and Zhang J 2021 Phys. Plasmas 28 042303 [16] Yue D N, Chen M, Geng P F, Yuan X H, Sheng Z M, Zhang J, Dong Q L, Das A and Kumar G R 2021 Plasma Phys. Control. Fusion 63 075009 [17] Tabak M, Hammer J, Glinsky M E, Kruer W L, Wilks S C, Woodworth J, Campbell E M, Perry M D and Mason R J 1994 Phys. Plasmas 1 1626 [18] Sheng Z M, Meyer-ter-Vehn J and Pukhov A 1998 Phys. Plasmas 5 3764 [19] Nakamura T, Bulanov S V, Zh E T and Kando M 2010 Phys. Rev. Lett. 105 135002 [20] Helle M H, Gordon D F, Kaganovich D, Chen Y, Palastro J P and Ting A 2016 Phys. Rev. Lett. 117 165001 [21] Sarri G, Singh D K, Davies J R, Fiuza F, Lancaster K L, Clark E L, Hassan S, Jiang J, Kageiwa N, Lopes N, Rehman A, Russo C, Scott R H H, Tanimoto T, Najmudin Z, Tanaka K A, Tatarakis M, Borghesi M and Norreys P A 2010 Phys. Rev. Lett. 105 175007 [22] Romagnani L, Bigongiari A, Kar S, Bulanov S V, Cecchetti C A, Esirkepov T Zh, Galimberti M, Jung R, Liseykina T V, Macchi A, Osterholz J, Pegoraro F, Willi O and Borghesi M 2010 Phys. Rev. Lett. 105 175002 [23] Fournier K B, Constantin C, Poco J, Miller M C, Back C A, Suter L J, Satcher J, Davis J and Grun J 2004 Phys. Rev. E 92 165005 [24] Li Y T, Sheng Z M, Ma Y Y, Jin Z, Zhang J, Chen Z L, Kodama R, Matsuoka T, Tampo M, Tanaka K A, Tsutsumi T, Yabuuchi T, Du K, Zhang H Q, Zhang L and Tang Y J 2005 Phys. Rev. E 72 066404 [25] Fonseca R A, Silva L O, Tsung F S, Decyk V K, Lu W, Ren C, Mori W B, Deng S, Lee S, Katsouleas T and Adam J C 2002 Lect. Notes Comput. Sci. 2331 342 [26] Zhao Y 2018 Studies of Laser Bandwidth Effects on Suppression of Parametric Instabilities in Laser Plasma Interactions (Ph. D. Dissertation) (Shanghai:Shanghai Jiao Tong University) (in Chinese) [27] Li G, Mori W B and Ren C 2013 Phys. Rev. Lett. 110 155002 [28] Liu Y, Klimo O, Esirkepov T Zh, Bulanov S V, Gu Y, Weber S and Korn G 2015 Phys. Plasmas 22 112302 [29] Park J, Bulanov S S, Bin J, Ji Q, Steinke S, Vay J L, Geddes C G R, Schroeder C B, Leemans W P, Schenkel T and Esarey E 2019 Phys. Plasmas 26 103108 |
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|