Please wait a minute...
Chin. Phys. B, 2015, Vol. 24(4): 040202    DOI: 10.1088/1674-1056/24/4/040202
GENERAL Prev   Next  

Light trapping characteristics of glass substrate with hemisphere pit arrays in thin film Si solar cells

Chen Le (陈乐)a b, Wang Qing-Kang (王庆康)a, Wangyang Pei-Hua (王阳培华)a, Huang Kun (黄堃)a, Shen Xiang-Qian (沈向前)a
a Key Laboratory for Thin Film and Micro-fabrication of the Ministry of Education, Department of Microelectronics and Nanoscience, Shanghai Jiao Tong University, Shanghai 200240, China;
b College of Physical Science and Technology Engineering, Guangxi Universities Key Laboratory of Complex System Optimization and Big Data Processing, Yulin Normal University, Yulin 537400, China
Abstract  

In this paper, the light trapping characteristics of glass substrate with hemisphere pit (HP) arrays in thin film Si solar cells are theoretically studied via a numerical approach. It is found that the HP glass substrate has good antireflection properties. Its surface reflectance can be reduced by ~ 50% compared with planar glass. The HP arrays can make the unabsorbed light return to the absorbing layer of solar cells, and the ratio of second absorption approximately equals 30%. Thus, the glass substrate with the hemisphere pit arrays (HP glass) can effectively reduce the total reflectivity of a solar cell from 20% to 13%. The HP glass can also prolong the optical path length. The numerical results show that the total optical path length of the thin film Si solar cell covered with the HP glass increases from 2ω to 4ω. These results are basically consistent with the experimental results.

Keywords:  numerical approach      light trapping      hemispherical pit (HP)      optical path length      solar cells  
Received:  09 August 2014      Revised:  01 November 2014      Accepted manuscript online: 
PACS:  02.50.-r (Probability theory, stochastic processes, and statistics)  
  07.60.-j (Optical instruments and equipment)  
  84.60.Jt (Photoelectric conversion)  
  88.40.H- (Solar cells (photovoltaics))  
Fund: 

Project supported by the National High-Tech Research and Development Program of China (Grant No. 2011AA050518).

Corresponding Authors:  Wang Qing-Kang     E-mail:  wangqingkang@sjtu.edu.cn

Cite this article: 

Chen Le (陈乐), Wang Qing-Kang (王庆康), Wangyang Pei-Hua (王阳培华), Huang Kun (黄堃), Shen Xiang-Qian (沈向前) Light trapping characteristics of glass substrate with hemisphere pit arrays in thin film Si solar cells 2015 Chin. Phys. B 24 040202

[1] Bai L S, Liu B F, Fan J, Zhang D K, Wei C C, Sun J, Zhao Y and Zhang X D 2014 Journal of Power Sources 266 138
[2] Jan H, Danie A, Lars K, Florian R and Bernd R 2014 Solar Energy Materials and Solar Cells 128 190
[3] Wang J, Tao K, Cai H K, Zhang D X and Li G F 2014 Materials Science in Semiconductor Processing 25 186
[4] Shin C, Park J, Kim S, Jang J, Jung J, Lee Y J and Yi J 2014 Journal of Nanoscience and Nanotechnology 14 8110
[5] Xu Z D, Yao Y, Brueckner E P, Li L F, Jiang J, Nuzzo R G and Liu G L 2014 Nanotechnology 25 305301
[6] Chen F X, Wang L S and Xu W Y 2013 Chin. Phys. B 22 045202
[7] Martin A G 2003 Solar Energy 74 181
[8] Martin R, Matthias Z, Onno G, Sebastian N, Simon K, Daniel S, Tobias S, Björn R, Bernd S and Rutger S 2014 Thin Solid Films 558 337
[9] Söderström K, Bugnon G, Biron R, Pahud C, Meillaud F, Haug F J and Ballif C 2012 J. Appl. Phys. 112 114503
[10] Huang Z H, Zhang J J, Ni J, Cao Y, Hu Z Y, Li C, Geng X H and Zhao Y 2013 Chin. Phys. B 22 098803
[11] Yu X M, Zhao J, Hou G F, Zhang J J, Zhang X D, and Zhao Y 2013 Acta Phys. Sin 62 120101 (in Chinese)
[12] Markvait T and Castaner L 2003 Practical Handbook of Photovoltaics Fundamentals and Applications (Cambridge: Cambridge University Press) p. 75
[13] Ali N M, Allam N K, Abdel Haleem A M and Rafat N H 2014 J. Appl. Phys. 116 024308
[14] Hong L, Rusli, Wang X C, Zheng H Y, Wang H and Yu H Y 2013 Trans. Nanotechnol. 13 431
[15] Chen T G, Yu P C, Chen S W, Chang F Y, Huang B Y, Cheng Y C, Hsiao J C, Li C K and Wu Y R 2014 Progress in Photovoltaics 22 452
[16] Jia Z N, Zhang X D, Liu Y, Wang Y F, Fan J, Liu C C and Zhao Y 2014 Chin. Phys. B 23 046106
[17] Peng K Q, Wang X, Li L, Wu X L and Lee S T 2010 J. Am. Chem. Soc. 132 6872
[18] Corcoran C J, Kang S, Li L F, Guo X Y, Chanda, D, and Nuzzo R G 2013 Appl. Mater. Interfaces 5 4239
[19] Jeong S, Garnett E C, Wang S, Yu Z F, Fan S H, Brongersma M L, McGehee M D and Cui Y 2012 Nano Lett. 12 2971
[20] Jeong S, Wang S and Cui Y 2012 J. Vac. Sci. Technol A 30 060801
[21] Huang K, Wang Q K, Yang X M, Hu K X, Yu M Y Y and Shen X Q 2014 Opt. Commun. 315 79
[22] Wangyang P H, Gan Y C, Wang Q K and Jian X S 2014 J. Mater. Chem. C 30 6140
[23] Qiu M B, Huang Y H and Liu Z D 2008 Acta Opt. Sin. 28 253 (in Chinese)
[24] http://rredc.nrel.gov/solar/spectra/am1.5
[25] http://refractiveindex.info/?shelf=glass&book=BK7&page=SCHOTT
[26] Yablonovitch E 1982 J. Opt. Soc. Am 72 899
[27] Deckman H, Roslo C and Yablonovitch E 1983 Opt. Lett. 8 491
[28] Jenny N 2003 Physics of Solar Cells (London: Imperial College Press) p. 223
[1] Improving efficiency of inverted perovskite solar cells via ethanolamine-doped PEDOT:PSS as hole transport layer
Zi-Jun Wang(王子君), Jia-Wen Li(李嘉文), Da-Yong Zhang(张大勇), Gen-Jie Yang(杨根杰), and Jun-Sheng Yu(于军胜). Chin. Phys. B, 2022, 31(8): 087802.
[2] Optical simulation of CsPbI3/TOPCon tandem solar cells with advanced light management
Min Yue(岳敏), Yan Wang(王燕), Hui-Li Liang(梁会力), and Zeng-Xia Mei (梅增霞). Chin. Phys. B, 2022, 31(8): 088801.
[3] Charge transfer modification of inverted planar perovskite solar cells by NiOx/Sr:NiOx bilayer hole transport layer
Qiaopeng Cui(崔翘鹏), Liang Zhao(赵亮), Xuewen Sun(孙学文), Qiannan Yao(姚倩楠), Sheng Huang(黄胜), Lei Zhu(朱磊), Yulong Zhao(赵宇龙), Jian Song(宋健), and Yinghuai Qiang(强颖怀). Chin. Phys. B, 2022, 31(3): 038801.
[4] Effect of net carriers at the interconnection layer in tandem organic solar cells
Li-Jia Chen(陈丽佳), Guo-Xi Niu(牛国玺), Lian-Bin Niu(牛连斌), and Qun-Liang Song(宋群梁). Chin. Phys. B, 2022, 31(3): 038802.
[5] Applications and functions of rare-earth ions in perovskite solar cells
Limin Cang(苍利民), Zongyao Qian(钱宗耀), Jinpei Wang(王金培), Libao Chen(陈利豹), Zhigang Wan(万志刚), Ke Yang(杨柯), Hui Zhang(张辉), and Yonghua Chen(陈永华). Chin. Phys. B, 2022, 31(3): 038402.
[6] Reveal the large open-circuit voltage deficit of all-inorganicCsPbIBr2 perovskite solar cells
Ying Hu(胡颖), Jiaping Wang(王家平), Peng Zhao(赵鹏), Zhenhua Lin(林珍华), Siyu Zhang(张思玉), Jie Su(苏杰), Miao Zhang(张苗), Jincheng Zhang(张进成), Jingjing Chang(常晶晶), and Yue Hao(郝跃). Chin. Phys. B, 2022, 31(3): 038804.
[7] Surface modulation of halide perovskite films for efficient and stable solar cells
Qinxuan Dai(戴沁煊), Chao Luo(骆超), Xianjin Wang(王显进), Feng Gao(高峰), Xiaole Jiang(姜晓乐), and Qing Zhao(赵清). Chin. Phys. B, 2022, 31(3): 037303.
[8] Nano Ag-enhanced photoelectric conversion efficiency in all-inorganic, hole-transporting-layer-free CsPbIBr2 perovskite solar cells
Youming Huang(黄友铭), Yizhi Wu(吴以治), Xiaoliang Xu(许小亮), Feifei Qin(秦飞飞), Shihan Zhang(张诗涵), Jiakai An(安嘉凯), Huijie Wang(王会杰), and Ling Liu(刘玲). Chin. Phys. B, 2022, 31(12): 128802.
[9] A silazane additive for CsPbI2Br perovskite solar cells
Ruiqi Cao(曹瑞琪), Yaochang Yue(乐耀昌), Hong Zhang(张弘), Qian Cheng(程倩), Boxin Wang(王博欣), Shilin Li(李世麟), Yuan Zhang(张渊), Shuhong Li(李书宏), and Huiqiong Zhou(周惠琼). Chin. Phys. B, 2022, 31(11): 110101.
[10] Could two-dimensional perovskites fundamentally solve the instability of perovskite photovoltaics
Luoran Chen(陈烙然), Hu Wang(王虎), and Yuchuan Shao(邵宇川). Chin. Phys. B, 2022, 31(11): 117803.
[11] Sputtered SnO2 as an interlayer for efficient semitransparent perovskite solar cells
Zheng Fang(方正), Liu Yang(杨柳), Yongbin Jin(靳永斌), Kaikai Liu(刘凯凯), Huiping Feng(酆辉平), Bingru Deng(邓冰如), Lingfang Zheng(郑玲芳), Changcai Cui(崔长彩), Chengbo Tian(田成波), Liqiang Xie(谢立强), Xipeng Xu(徐西鹏), and Zhanhua Wei(魏展画). Chin. Phys. B, 2022, 31(11): 118801.
[12] Recent advances of interface engineering in inverted perovskite solar cells
Shiqi Yu(余诗琪), Zhuang Xiong(熊壮), Zhenhan Wang(王振涵), Haitao Zhou(周海涛), Fei Ma(马飞), Zihan Qu(瞿子涵), Yang Zhao(赵洋), Xinbo Chu(楚新波), and Jingbi You(游经碧). Chin. Phys. B, 2022, 31(10): 107307.
[13] Device simulation of quasi-two-dimensional perovskite/silicon tandem solar cells towards 30%-efficiency
Xiao-Ping Xie(谢小平), Qian-Yu Bai(白倩玉), Gang Liu(刘刚), Peng Dong(董鹏), Da-Wei Liu(刘大伟), Yu-Feng Ni(倪玉凤), Chen-Bo Liu(刘晨波), He Xi(习鹤), Wei-Dong Zhu(朱卫东), Da-Zheng Chen(陈大正), and Chun-Fu Zhang(张春福). Chin. Phys. B, 2022, 31(10): 108801.
[14] Improved efficiency and stability of perovskite solar cells with molecular ameliorating of ZnO nanorod/perovskite interface and Mg-doping ZnO
Zhenyun Zhang(张振雲), Lei Xu(许磊), and Junjie Qi(齐俊杰). Chin. Phys. B, 2021, 30(3): 038801.
[15] Non-peripherally octaalkyl-substituted nickel phthalocyanines used as non-dopant hole transport materials in perovskite solar cells
Fei Qi(齐飞), Bo Wu(吴波), Junyuan Xu(徐俊源), Qian Chen(陈潜), Haiquan Shan(单海权), Jiaju Xu(许家驹), and Zong-Xiang Xu(许宗祥). Chin. Phys. B, 2021, 30(10): 108801.
No Suggested Reading articles found!