Please wait a minute...
Chin. Phys. B, 2022, Vol. 31(11): 110101    DOI: 10.1088/1674-1056/ac7c01
Special Issue: SPECIAL TOPIC — Emerging photovoltaic materials and devices
SPECIAL TOPIC—Emerging photovoltaic materials and devices   Next  

A silazane additive for CsPbI2Br perovskite solar cells

Ruiqi Cao(曹瑞琪)1,2,†, Yaochang Yue(乐耀昌)2,3,†, Hong Zhang(张弘)2, Qian Cheng(程倩)2, Boxin Wang(王博欣)2, Shilin Li(李世麟)2,3, Yuan Zhang(张渊)3, Shuhong Li(李书宏)1,‡, and Huiqiong Zhou(周惠琼)2,§
1 Beijing Technology&Business University, Department of Chemistry, Beijing 100048, China;
2 CAS Key Laboratory of Nanosystem and Hierarchical Fabrication, Nanoscience National Center for Nanoscience and Technology, Beijing 100190, China;
3 HEEGER Beijing Research&Development Center, Beihang University, Beijing 100191, China
Abstract  Adding additives into peroskite precursor solution has been proven as a simple and efficient strategy to improve the quality of peroskite films. In this work, we demonstrate an effective additive strategy to improve the quality of all-inorganic perovskite films by adding a novel silazane additive heptamethyldisilazane (HDMS). The power conversion efficiency (PCE) of the optimized devices is enhanced from 14.55% to 15.31% with an open-circuit voltage over 1.26 V due to the higher quality perovskite films with lower trap density after the incorporation of HDMS. More interestingly, the HDMS devices exhibit superior humidity and thermal stability compared with the control ones. This work provides a simple and efficient strategy to enhance the device performance and stability of all-inorganic perovskite solar cells, which could facilitate its commercialization.
Keywords:  silazane      all-inorganic perovskite      heptamethyldisilazane (HDMS)      additive      solar cells  
Received:  20 February 2022      Revised:  24 May 2022      Accepted manuscript online:  27 June 2022
PACS:  01.50.Rt (Physics tournaments and contests)  
  14.70.Bh (Photons)  
Fund: This work was financially supported by the National Key Research and Development Program of China (Grant No. 2017YFA0206600), the National Natural Science Foundation of China (Grant No. 21922505), and the Strategic Priority Research Program of Chinese Academy of Sciences (Grant No. XDB36000000).
Corresponding Authors:  Shuhong Li, Huiqiong Zhou     E-mail:  lish@th.btbu.edu.cn;zhouhq@nanoctr.cn

Cite this article: 

Ruiqi Cao(曹瑞琪), Yaochang Yue(乐耀昌), Hong Zhang(张弘), Qian Cheng(程倩), Boxin Wang(王博欣), Shilin Li(李世麟), Yuan Zhang(张渊), Shuhong Li(李书宏), and Huiqiong Zhou(周惠琼) A silazane additive for CsPbI2Br perovskite solar cells 2022 Chin. Phys. B 31 110101

[1] Yoo J J, Seo G, Chua M R, Park T G, Lu Y, Rotermund F, Kim Y K, Moon C S, Jeon N J, Correa-Baena J P, Bulovic V, Shin S S, Bawendi M G and Seo J 2021 Nature 590 587
[2] Cheng Q, Xia H, Li X, Wang B, Li Y, Zhang X, Zhang H, Zhang Y and Zhou H 2021 Solar rrl. 6 2100805
[3] Yue Y, Zhou J, Cheng Q, Zhang X, Wang B, Li Y, Li S, Cao R, Wang K, Wang H, Zhou H and Zhang Y 2021 J. Phys. Chem. Lett. 12 11228
[4] Wu G, Yang T, Li X, Ahmad N, Zhang X, Yue S, Zhou J, Li Y, Wang H, Xinghua Shi, Liu S, Zhao K, Zhou H and Zhang Y 2020 Matter 4 582
[5] Zhou Q, Wang B, Meng R, Zhou J, Xie S, Zhang X, Wang J, Yue S, Qin B, Zhou H and Zhang Y 2020 Adv. Funct. Mater. 30 2000550
[6] Li X, Wu G, Wang M, Yu B, Zhou J, Wang B, Zhang X, Xia H, Yue S, Wang K, Zhang C, Zhang J, Zhou H and Zhang Y 2020 Adv. Energy Mater. 10 2001832
[7] Li X, Wu G, Zhou J, Zhang J, Zhang X, Wang B, Xia H, Zhou H and Zhang Y 2020 Small 16 1906997
[8] Xiang S, Li W, Wei Y, Liu J, Liu H, Zhu L and Chen H 2018 Nanoscale 10 9996
[9] Wang K, Zhou J, Li X, Nafees A, Xia H, Wu G, Zhang X, Wang B, Zhang D, Zhou Y, Zhou H and Zhang Y 2020 Phys. Chem. Chem. Phys. 22 17847
[10] Wu G, Liang R, Ge M, Sun G, Zhang Y and Xing G 2021 Adv. Mater. 34 2105635
[11] Liu X, Zhang Z, Lin F and Cheng Y 2021 InfoMat 3 1218
[12] Zhang D, Fan P, Shi J, Zheng Y, Zhong J and Yu J 2021 Nano Res. 14 1319
[13] Zhou W, Chen Y and Zhou H 2021 Acta Phys. Chim. Sin. 37 2009044
[14] Xia H, Li X, Zhou J, Wang B, Chu Y, Li Y, Wu G, Zhang D, Xue B, Zhang X, Hu Y, Zhou H and Zhang Y 2020 ACS Appl. Energy Mater. 3 3186
[15] Wu G, Zhou J, Zhang J, Meng R, Wang B, Xue B, Leng X, Zhang D, Zhang X, Bi S, Zhou Q, Wei Z, Zhou H and Zhang Y 2019 Nano Energy 58 706
[16] Kim B and Seok S I 2020 Energy Environ. Sci. 13 805
[17] Chen W, Li X and Li Y 2020 Energy Environ. Sci. 13 1971
[18] Jia X, Liu L and Fang Z 2019 J. Mater. Chem. C 7 7207
[19] Kanda H, Shibayama N, Huckaba A J, Lee Y, Paek S, Klipfel N, Roldán-Carmona C, Queloz V I E, Grancini G, Zhang Y, Abuhelaiqa M, Cho K T, Li M, Mensi M D, Kinge S and Nazeeruddin M K 2020 Energy Environ. Sci. 13 1222
[20] Wang B, Wu F, Bi S, Zhou J, Wang J, Leng X, Zhang D, Meng R, Xue B, Zong C, Zhu L, Zhang Y and Zhou H 2019 J. Mater. Chem. A 7 23895
[21] You S, Wang H, Bi S, Zhou J, Qin L, Zhao Z, Xu Y, Zhang Y, Shi X, Tang Z and Zhou H 2018 Adv. Mater. 30 1706924
[22] Han Y, Zhao H, Duan C, Yang S, Yang Z, Liu Z and Liu S 2020 Adv. Funct. Mater. 30 1909972
[23] Wang Y, Qian D, Cui Y, Zhang H, Hou J, Vandewal K, Kirchartz T and Gao F 2018 Adv. Energy Mater. 8 1801352
[24] Wang Q, Zhang W, Zhang Z, Liu S, Wu J, Guan Y, Mei A, Rong Y, Hu Y and Han H 2019 Adv. Energy Mater. 10 1903092
[25] Wang X, Ran X, Liu X, Gu H, Zuo S, Hui W, Lu H, Sun B, Gao X, Zhang J, Xia Y, Chen Y and Huang W 2020 Angew. Chem. Int. Ed. 59 13354
[26] Yin G, Zhao H, Jiang H, Yuan S, Niu T, Zhao K, Liu Z and Liu S F 2018 Adv. Funct. Mater. 28 1803269
[27] Zhao H, Han Y, Xu Z, Duan C, Yang S, Yuan S, Yang Z, Liu Z and Liu S 2019 Adv. Energy Mater. 9 1902279
[28] Wang H, Dong Z, Liu H, Li W, Zhu L and Chen H 2020 Adv. Energy Mater. 11 2002940
[29] Tsai H, Nie W, Lin Y H, Blancon J C, Tretiak S, Even J, Gupta G, Ajayan P M and Mohite A D 2017 Adv. Energy Mater. 7 1602159
[30] Qin Y, Zhong H, Intemann J J, Leng S, Cui M, Qin C, Xiong M, Liu F, Jen A K Y and Yao K 2020 Adv. Energy Mater. 10 1904050
[31] Shi P, Ding Y, Ren Y, Shi X, Arain Z, Liu C, Liu X, Cai M, Cao G, Nazeeruddin M K and Dai S 2019 Adv. Sci. (Weinh) 6 1901591
[32] Ye Q, Zhao Y, Mu S, Ma F, Gao F, Chu Z, Yin Z, Gao P, Zhang X and You J 2019 Adv. Mater. 31 1905143
[33] Duan X, Li X, Tan L, Huang Z, Yang J, Liu G, Lin Z and Chen Y 2020 Adv. Mater. 32 2000617
[34] Chen S, Zhang Y, Zhang X, Zhao J, Zhao Z, Su X, Hua Z, Zhang J, Cao J, Feng J, Wang X, Li X, Qi J, Li J and Gao P 2020 Adv. Mater. 32 2001107
[35] Lau C F J, Zhang M, Deng X, Zheng J, Bing J, Ma Q, Kim J, Hu L, Green M A, Huang S and Ho-Baillie A 2017 ACS Energy Lett. 2 2319
[36] Huang S H, Tian K Y, Huang H C, Li C F, Chu W C, Lee K M, Huang Y C and Su W F 2020 ACS Appl. Mater. Interfaces 12 26041
[37] Bai D, Zhang J, Jin Z, Bian H, Wang K, Wang H, Liang L, Wang Q and Liu S F 2018 ACS Energy Lett. 3 970
[38] Niezgoda J S, Foley B J, Chen A Z and Choi J J 2017 ACS Energy Lett. 2 1043
[1] Improving efficiency of inverted perovskite solar cells via ethanolamine-doped PEDOT:PSS as hole transport layer
Zi-Jun Wang(王子君), Jia-Wen Li(李嘉文), Da-Yong Zhang(张大勇), Gen-Jie Yang(杨根杰), and Jun-Sheng Yu(于军胜). Chin. Phys. B, 2022, 31(8): 087802.
[2] Optical simulation of CsPbI3/TOPCon tandem solar cells with advanced light management
Min Yue(岳敏), Yan Wang(王燕), Hui-Li Liang(梁会力), and Zeng-Xia Mei (梅增霞). Chin. Phys. B, 2022, 31(8): 088801.
[3] Enhancement of magnetic and dielectric properties of low temperature sintered NiCuZn ferrite by Bi2O3-CuO additives
Jie Li(李颉), Bing Lu(卢冰), Ying Zhang(张颖), Jian Wu(武剑), Yan Yang(杨燕), Xue-Ning Han(韩雪宁), Dan-Dan Wen(文丹丹), Zheng Liang(梁峥), and Huai-Wu Zhang(张怀武). Chin. Phys. B, 2022, 31(4): 047502.
[4] Insights into the adsorption of water and oxygen on the cubic CsPbBr3 surfaces: A first-principles study
Xin Zhang(张鑫), Ruge Quhe(屈贺如歌), and Ming Lei(雷鸣). Chin. Phys. B, 2022, 31(4): 046401.
[5] Surface modulation of halide perovskite films for efficient and stable solar cells
Qinxuan Dai(戴沁煊), Chao Luo(骆超), Xianjin Wang(王显进), Feng Gao(高峰), Xiaole Jiang(姜晓乐), and Qing Zhao(赵清). Chin. Phys. B, 2022, 31(3): 037303.
[6] Charge transfer modification of inverted planar perovskite solar cells by NiOx/Sr:NiOx bilayer hole transport layer
Qiaopeng Cui(崔翘鹏), Liang Zhao(赵亮), Xuewen Sun(孙学文), Qiannan Yao(姚倩楠), Sheng Huang(黄胜), Lei Zhu(朱磊), Yulong Zhao(赵宇龙), Jian Song(宋健), and Yinghuai Qiang(强颖怀). Chin. Phys. B, 2022, 31(3): 038801.
[7] Effect of net carriers at the interconnection layer in tandem organic solar cells
Li-Jia Chen(陈丽佳), Guo-Xi Niu(牛国玺), Lian-Bin Niu(牛连斌), and Qun-Liang Song(宋群梁). Chin. Phys. B, 2022, 31(3): 038802.
[8] Applications and functions of rare-earth ions in perovskite solar cells
Limin Cang(苍利民), Zongyao Qian(钱宗耀), Jinpei Wang(王金培), Libao Chen(陈利豹), Zhigang Wan(万志刚), Ke Yang(杨柯), Hui Zhang(张辉), and Yonghua Chen(陈永华). Chin. Phys. B, 2022, 31(3): 038402.
[9] Reveal the large open-circuit voltage deficit of all-inorganicCsPbIBr2 perovskite solar cells
Ying Hu(胡颖), Jiaping Wang(王家平), Peng Zhao(赵鹏), Zhenhua Lin(林珍华), Siyu Zhang(张思玉), Jie Su(苏杰), Miao Zhang(张苗), Jincheng Zhang(张进成), Jingjing Chang(常晶晶), and Yue Hao(郝跃). Chin. Phys. B, 2022, 31(3): 038804.
[10] Nano Ag-enhanced photoelectric conversion efficiency in all-inorganic, hole-transporting-layer-free CsPbIBr2 perovskite solar cells
Youming Huang(黄友铭), Yizhi Wu(吴以治), Xiaoliang Xu(许小亮), Feifei Qin(秦飞飞), Shihan Zhang(张诗涵), Jiakai An(安嘉凯), Huijie Wang(王会杰), and Ling Liu(刘玲). Chin. Phys. B, 2022, 31(12): 128802.
[11] Could two-dimensional perovskites fundamentally solve the instability of perovskite photovoltaics
Luoran Chen(陈烙然), Hu Wang(王虎), and Yuchuan Shao(邵宇川). Chin. Phys. B, 2022, 31(11): 117803.
[12] Sputtered SnO2 as an interlayer for efficient semitransparent perovskite solar cells
Zheng Fang(方正), Liu Yang(杨柳), Yongbin Jin(靳永斌), Kaikai Liu(刘凯凯), Huiping Feng(酆辉平), Bingru Deng(邓冰如), Lingfang Zheng(郑玲芳), Changcai Cui(崔长彩), Chengbo Tian(田成波), Liqiang Xie(谢立强), Xipeng Xu(徐西鹏), and Zhanhua Wei(魏展画). Chin. Phys. B, 2022, 31(11): 118801.
[13] Recent advances of interface engineering in inverted perovskite solar cells
Shiqi Yu(余诗琪), Zhuang Xiong(熊壮), Zhenhan Wang(王振涵), Haitao Zhou(周海涛), Fei Ma(马飞), Zihan Qu(瞿子涵), Yang Zhao(赵洋), Xinbo Chu(楚新波), and Jingbi You(游经碧). Chin. Phys. B, 2022, 31(10): 107307.
[14] Device simulation of quasi-two-dimensional perovskite/silicon tandem solar cells towards 30%-efficiency
Xiao-Ping Xie(谢小平), Qian-Yu Bai(白倩玉), Gang Liu(刘刚), Peng Dong(董鹏), Da-Wei Liu(刘大伟), Yu-Feng Ni(倪玉凤), Chen-Bo Liu(刘晨波), He Xi(习鹤), Wei-Dong Zhu(朱卫东), Da-Zheng Chen(陈大正), and Chun-Fu Zhang(张春福). Chin. Phys. B, 2022, 31(10): 108801.
[15] Silicon micropillar electrodes of lithiumion batteries used for characterizing electrolyte additives
Fangrong Hu(胡放荣), Mingyang Zhang(张铭扬), Wenbin Qi(起文斌), Jieyun Zheng(郑杰允), Yue Sun(孙悦), Jianyu Kang(康剑宇), Hailong Yu(俞海龙), Qiyu Wang(王其钰), Shijuan Chen(陈世娟), Xinhua Sun(孙新华), Baogang Quan(全保刚), Junjie Li(李俊杰), Changzhi Gu(顾长志), and Hong Li(李泓). Chin. Phys. B, 2021, 30(6): 068202.
No Suggested Reading articles found!