Special Issue:
SPECIAL TOPIC — Emerging photovoltaic materials and devices
|
TOPICAL REVIEW—Emerging photovoltaic materials and devices |
Prev
Next
|
|
|
Could two-dimensional perovskites fundamentally solve the instability of perovskite photovoltaics |
Luoran Chen(陈烙然)1,2,3, Hu Wang(王虎)1,3,†, and Yuchuan Shao(邵宇川)1,2,3,4,‡ |
1 Laboratory of Thin Film Optics, Shanghai Institute of Optics and Fine Mechanics, Chinese Academy of Sciences, Shanghai 201800, China; 2 Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, China; 3 Key Laboratory of Materials for High Power Laser, Chinese Academy of Sciences, Shanghai 201800, China; 4 Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, China |
|
|
Abstract The high efficiency and low production cost enable the halide perovskite solar cells as a promising technology for the next generation photovoltaics. Nevertheless, the relatively poor stability of the organic-inorganic halide perovskites hinders their commercial applications. In the past few years, two-dimensional (2D) perovskite has emerged as a more stable alternative to the three-dimensional (3D) counterparts and attracted intense research interests. Although many attempts and advances have been made, it is still ambiguous that whether the 2D perovskites could bring closure to the stability issue. To answer this essential question, a systematic study of the nature of 2D halide perovskites is necessary. Here, we focus on the stability investigations of 2D perovskites from different perspectives, especially light, heat, ion migration and strain. Several remaining challenges and opening problems are also discussed. With further material and device engineering, we believe that the 2D perovskites would promote perovskite solar cells to a promising future.
|
Received: 19 November 2021
Revised: 11 April 2022
Accepted manuscript online: 22 April 2022
|
PACS:
|
78.56.-a
|
(Photoconduction and photovoltaic effects)
|
|
78.66.Db
|
(Elemental semiconductors and insulators)
|
|
78.66.Sq
|
(Composite materials)
|
|
81.07.St
|
(Quantum wells)
|
|
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 61805263 and 62104234). |
Corresponding Authors:
Hu Wang, Yuchuan Shao
E-mail: wanghu@siom.ac.cn;shaoyuchuan@siom.ac.cn
|
Cite this article:
Luoran Chen(陈烙然), Hu Wang(王虎), and Yuchuan Shao(邵宇川) Could two-dimensional perovskites fundamentally solve the instability of perovskite photovoltaics 2022 Chin. Phys. B 31 117803
|
[1] Meng L, You J B and Yang Y 2018 Nat. Commun. 9 5265 [2] Song Z, McElvany C L, Phillips A B, Celik I, Krantz P W, Watthage S C, Liyanage G K, Apul D and Heben M J 2017 Energy Environ. Sci. 10 1297 [3] Lee M M, Teuscher J, Miyasaka T, Murakami T N and Snaith H J 2012 Science 338 643 [4] Yin W J, Shi T T and Yan Y F 2014 Adv. Mater. 26 4653 [5] Stranks S D, Eperon G E, Grancini G, Menelaou C, Alcocer M J P, Leijtens T, Herz L M, Petrozza A and Snaith H J 2013 Science 342 341 [6] Xing G C, Mathews N, Sun S Y, Lim S S, Lam Y M, Gratzel M, Mhaisalkar S and Sum T C 2013 Science 342 344 [7] Dong Q F, Fang Y J, Shao Y C, Mulligan P, Qiu J, Cao L and Huang J S 2015 Science 347 967 [8] Yin W J, Shi T T and Yan Y F 2014 Appl. Phys. Lett. 104 063903 [9] Shi T T, Yin W J, Hong F, Zhu K and Yan Y F 2015 Appl. Phys. Lett. 106 103902 [10] Kojima A, Teshima K, Shirai Y and Miyasaka T 2009 J. Am. Chem. Soc. 131 6050 [11] Kim H S, Lee C R, Im J H, Lee K B, Moehl T, Marchioro A, Moon S J, Humphry-Baker R, Yum J H, Moser J E, Gratzel M and Park N G 2012 Sci. Rep. 2 591 [12] Yang W S, Noh J H, Jeon N J, Kim Y C, Ryu S, Seo J and Seok S I 2015 Science 348 1234 [13] Yang W S, Park B W, Jung E H, Jeon N J, Kim Y C, Lee D U, Shin S S, Seo J, Kim E K, Noh J H and Seok S I 2017 Science 356 1376 [14] https://www.nrel.gov/pv/cell-efficiency.html [15] Bu T, Li J, Li H, Tian C, Su J, Tong G, Ono L K, Wang C, Lin Z, Chai N, Zhang X L, Chang J, Lu J, Zhong J, Huang W, Qi Y, Cheng Y B and Huang F 2021 Science 372 1327 [16] Han Y, Meyer S, Dkhissi Y, Weber K, Pringle J M, Bach U, Spiccia L and Cheng Y B 2015 J. Mater. Chem. A 3 8139 [17] Yang J L, Siempelkamp B D, Liu D Y and Kelly T L 2015 Acs Nano 9 1955 [18] Misra R K, Aharon S, Li B L, Mogilyansky D, Visoly-Fisher I, Etgar L and Katz E A 2015 J. Phys. Chem. Lett. 6 326 [19] Divitini G, Cacovich S, Matteocci F, Cina L, Di Carlo A and Ducati C 2016 Nat. Energy 1 15012 [20] Bryant D, Aristidou N, Pont S, Sanchez-Molina I, Chotchunangatchaval T, Wheeler S, Durrant J R and Haque S A 2016 Energy Environ. Sci. 9 1655 [21] Yuan H F, Debroye E, Janssen K, Naiki H, Steuwe C, Lu G, Moris M, Orgiu E, Uji-i H, De Schryver F, Samori P, Hofkens J and Roeffaers M 2016 J. Phys. Chem. Lett. 7 561 [22] Xiao Z G, Yuan Y B, Shao Y C, Wang Q, Dong Q F, Bi C, Sharma P, Gruverman A and Huang J S 2015 Nat. Mater. 14 193 [23] Eames C, Frost J M, Barnes P R F, O'Regan B C, Walsh A and Islam M S 2015 Nat. Commun. 6 7497 [24] Smith I C, Hoke E T, Solis-Ibarra D, McGehee M D and Karunadasa H I 2014 Angew. Chem. Int. Ed. 53 11232 [25] Cao D H, Stoumpos C C, Farha O K, Hupp J T and Kanatzidis M G 2015 J. Am. Chem. Soc. 137 7843 [26] Tsai H H, Nie W Y, Blancon J C, Toumpos C C S, Asadpour R, Harutyunyan B, Neukirch A J, Verduzco R, Crochet J J, Tretiak S, Pedesseau L, Even J, Alam M A, Gupta G, Lou J, Ajayan P M, Bedzyk M J, Kanatzidis M G and Mohite A D 2016 Nature 536 312 [27] Zhang X Q, Wu G, Yang S D, Fu W F, Zhang Z Q, Chen C, Liu W Q, Yan J L, Yang W T and Chen H Z 2017 Small 13 1700611 [28] Liang C, Gu H, Xia Y D, Wang Z, Liu X T, Xia J M, Zuo S W, Hu Y, Gao X Y, Hui W, Chao L F, Niu T T, Fang M, Lu H, Dong H, Yu H, Chen S, Ran X Q, Song L, Li B X, Zhang J, Peng Y, Shao G S, Wang J P, Chen Y H, Xing G C and Huang W 2020 Nat. Energy 6 38 [29] Ruddlesden S N and Popper P 1957 Acta Cryst. 10 538 [30] Ruddlesden S N and Popper P 1958 Acta Cryst. 11 54 [31] Dion M, Ganne M and Tournoux M 1981 Mater. Res. Bull. 16 1429 [32] Jacobson A J, Johnson J W and Lewandowski J T 1985 Inorg. Chem. 24 3727 [33] Fu Y P, Wu T, Wang J, Zhai J Y, Shearer M J, Zhao Y Z, Hamers R J, Kan E J, Deng K M, Zhu X Y and Jin S 2017 Nano Lett. 17 4405 [34] Stoumpos C C, Cao D H, Clark D J, Young J, Rondinelli J M, Jang J I, Hupp J T and Kanatzidis M G 2016 Chem. Mater. 28 2852 [35] Hoque M N F, Islam N, Li Z, Ren G F, Zhu K and Fan Z Y 2016 Chemsuschem 9 2692 [36] Shi Z M, Cao Z, Sun X J, Jia Y P, Li D B, Cavallo L and Schwingenschlogl U 2019 Small 15 1900462 [37] Mao L L, Guo P J, Kepenekian M, Spanopoulos I, He Y H, Katan C, Even J, Schaller R D, Seshadri R, Stoumpos C C and Kanatzidis M G 2020 J. Am. Chem. Soc. 142 8342 [38] Lu D, Lv G W, Xu Z Y, Dong Y X, Ji X F and Liu Y S 2020 J. Am. Chem. Soc. 142 11114 [39] Qu Z H, Ma F, Zhao Y, Chu X B, Yu S Q and You J B 2021 Chin. Phys. Lett. 38 107801 [40] Dai Q X, Luo C, Wang X J, Gao F, Jiang X L and Zhao Q 2022 Chin. Phys. B 31 037303 [41] Ahmad S, Fu P, Yu S W, Yang Q, Liu X, Wang X C, Wang X L, Guo X and Li C 2019 Joule 3 794 [42] Quan L N, Yuan M J, Comin R, Voznyy O, Beauregard E M, Hoogland S, Buin A, Kirmani A R, Zhao K, Amassian A, Kim D H and Sargent E H 2016 J. Am. Chem. Soc. 138 2649 [43] Stranks S D and Snaith H J 2015 Nat. Nanotechnol. 10 391 [44] Tong C J, Geng W, Tang Z K, Yam C Y, Fan X L, Liu J, Lau W M and Liu L M 2015 J. Phys. Chem. Lett. 6 3289 [45] Ma Z Q, Shao Y F, Wong P K, Shi X Q and Pan H 2018 J. Phys. Chem. C 122 5844 [46] Ren H, Yu S D, Chao L F, Xia Y D, Sun Y H, Zuo S W, Li F, Niu T T, Yang Y G, Ju H X, Li B X, Du H Y, Gao X Y, Zhang J, Wang J P, Zhang L J, Chen Y H and Huang W 2020 Nat. Photon. 14 154 [47] Xu Z Y, Lu D, Liu F, Lai H T, Wan X J, Zhang X D, Liu Y S and Chen Y S 2020 Acs Nano 14 4871 [48] Yuan Y B and Huang J S 2016 Acc. Chem. Res. 49 286 [49] Haruyama J, Sodeyama K, Han L Y and Tateyama Y 2015 J. Am. Chem. Soc. 137 10048 [50] Yang J H, Yin W J, Park J S and Wei S H 2016 J. Mater. Chem. A 4 13105 [51] Yang D W, Ming W M, Shi H L, Zhang L J and Du M H 2016 Chem. Mater. 28 4349 [52] Knop O, Wasylishen R E, White M A, Cameron T S and Van Oort M J M 1990 Can. J. Chem. 68 412 [53] Lee H, Gaiaschi S, Chapon P, Tondelier D, Bouree J E, Bonnassieux Y, Derycke V and Geffroy B 2019 J. Phys. Chem. C 123 17728 [54] Lin Y, Bai Y, Fang Y J, Wang Q, Deng Y H and Huang J S 2017 Acs Energy Lett. 2 1571 [55] Xiao X, Dai J, Fang Y J, Zhao J J, Zheng X P, Tang S, Rudd P N, Zeng X C and Huang J S 2018 Acs Energy Lett. 3 684 [56] Mizusaki J, Arai K and Fueki K 1983 Solid State Ionics 11 203 [57] Dualeh A, Moehl T, Tetreault N, Teuscher J, Gao P, Nazeeruddin M K and Gratzel M 2014 Acs Nano 8 362 [58] Yang T Y, Gregori G, Pellet N, Gratzel M and Maier J 2015 Angew. Chem. Int. Ed. 54 7905 [59] Yuan Y B, Wang Q, Shao Y C, Lu H D, Li T, Gruverman A and Huang J S 2016 Adv. Energy Mater. 6 1501803 [60] Huang Z R, Proppe A H, Tan H R, Saidaminov M I, Tan F R, Mei A Y, Tan C S, Wei M Y, Hou Y, Han H W, Keley S O and Sargenet E H 2019 Acs Energy Lett. 4 1521 [61] Lee H, Gaiaschi S, Chapon P, Marronnier A, Lee H, Vanel J C, Tondelier D, Bouree J E, Bonnassieux Y and Geffroy B 2017 Acs Energy Lett. 2 943 [62] Cho J, DuBose J T, Le A N T and Kamat P V 2020 ACS Materials Lett. 2 565 [63] Yuan Y B, Chae J, Shao Y C, Wang Q, Xiao Z G, Centrone A and Huang J S 2015 Adv. Energy Mater. 5 1500615 [64] Zhang L, Liu Y C, Yang Z and Li S Z 2019 J. Energy Chem. 37 97 [65] Kim S, Eom T, Ha Y S, Hong K H and Kim H 2020 Chem. Mater. 32 4265 [66] Lee J W, Kim D H, Kim H S, Seo S W, Cho S M and Park N G 2015 Adv. Energy Mater. 5 1501310 [67] Jeon N J, Noh J H, Yang W S, Kim Y C, Ryu S, Seo J and Seok S I 2015 Nature 517 476 [68] Saliba M, Matsui T, Seo J Y, Domanski K, Correa-Baena J P, Nazeeruddin M K, Zakeeruddin S M, Tress W, Abate A, Hagfeldt A and Gratzel M 2016 Energy Environ. sci. 9 1989 [69] Juarez-Perez E J, Ono L K, Maeda M, Jiang Y, Hawash Z and Qi Y B 2018 J. Mater. Chem. A 6 9604 [70] Conings B, Drijkoningen J, Gauquelin N, Babayigit A, D'Haen J, D'Olieslaeger L, Ethirajan A, Verbeeck J, Manca J, Mosconi E, De Angelis F and Boyen H G 2015 Adv. Energy Mater. 5 1500477 [71] Wang Y B, Wu T H, Barbaud J, Kong W Y, Cui D Y, Chen H, Yang X D and Han L Y 2019 Science 365 687 [72] Juarez-Perez E J, Hawash Z, Raga S R, Ono L K and Qi Y B 2016 Energy Environ. sci. 9 3406 [73] Wang S H, Jiang Y, Juarez-Perez E J, Ono L K and Qi Y B 2017 Nat. Energy 2 16195 [74] Zhao Y X and Zhu K 2016 Chem. Soc. Rev. 45 655 [75] Wu Y Z, Xie F X, Chen H, Yang X D, Su H M, Cai M L, Zhou Z M, Noda T and Han L Y 2017 Adv. Mater. 29 1701073 [76] Di J, Chang J and Liu S 2020 EcoMat 2 e12036 [77] Wang Z P, Lin Q Q, Chmiel F P, Sakai N, Herz L M and Snaith H J 2017 Nat. Energy 2 17135 [78] Park N G 2020 Adv. Energy Mater. 10 1903106 [79] Dequilettes D W, Zhang W, Burlakov V M, Graham D J, Leijtens T, Osherov A, Bulovic V, Snaith H J, Ginger D S and Stranks S D 2016 Nat. Commun. 7 11683 [80] Galisteo-Lopez J F, Li Y L and Miguez H 2016 J. Phys. Chem. Lett. 7 5227 [81] Ma W F, Ding C J, Wazir N, Wang X S, Kong D N, Li A, Zou B S and Liu R B 2022 Chin. Phys. B 31 037802 [82] Anaya M, Galisteo-Lopez J F, Calvo M E, Espinos J P and Miguez H 2018 J. Phys. Chem. Lett. 9 3891 [83] Hoke E T, Slotcavage D J, Dohner E R, Bowring A R, Karunadasa H I and McGehee M D 2015 Chem. Sci. 6 613 [84] Shah A, Torres P, Tscharner R, Wyrsch N and Keppner H 1999 Science 285 692 [85] Fang H H, Yang J, Tao S X, Adjokatse S, Kamminga M E, Ye J T, Blake G R, Even J and Loi M A 2018 Adv. Funct. Mater. 28 1800305 [86] Wu X X, Tan L Z, Shen X Z, Hu T, Miyata K, Trinh M T, Li R K, Coffee R, Liu S, Egger D A, Makasyuk I, Zheng Q, Fry A, Robinson J S, Smith M D, Guzelturk B, Karunadasa H I, Wang X J, Zhu X Y, Kronik L, Rappe A M and Lindenberg A M 2017 Sci. Adv. 3 e1602388 [87] Jiang X, Zang Z, Zhou Y, Li H, Wei Q and Ning Z 2021 Acc. Mater. Res. 2 210 [88] Chen M, Dong Q S, Eickemeyer F T, Liu Y H, Dai Z H, Carl A D, Bahrami B, Chowdhury A H, Grimm R L, Shi Y T, Qiao Q Q, Zakeeruddin S M, Gratzel M and Padture N P 2020 ACS Energy Lett. 5 2223 [89] Zhao J J, Deng Y H, Wei H T, Zheng X P, Yu Z H, Shao Y C, Shield J E and Huang J S 2017 Sci. Adv. 3 eaao5616 [90] Wu J H, Cui Y Q, Yu B C, Liu K, Li Y M, Li H S, Shi J J, Wu H J, Luo Y H, Li D M and Meng Q B 2019 Adv. Funct. Mater. 29 1905336 [91] Xue D J, Hou Y, Liu S C, Wei M Y, Chen B, Huang Z R, Li Z B, Sun B, Proppe A H, Dong Y T, Saidaminov M I, Kelley S O, Hu J S and Sargent E H 2020 Nat. Commun. 11 1514 [92] Feng G Q, Qin Y, Ran C, Ji L J, Dong L Y and Li W 2018 APL Mater. 6 114201 [93] Wang H, Zhu C, Liu L, Ma S, Liu P F, Wu J F, Shi C B, Du Q, Hao Y M, Xiang S S, Chen H N, Chen P W, Bai Y, Zhou H P, Li Y J and Chen Q 2019 Adv. Mater. 31 1904408 |
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|