Please wait a minute...
Chin. Phys. B, 2021, Vol. 30(10): 108801    DOI: 10.1088/1674-1056/ac1573
INTERDISCIPLINARY PHYSICS AND RELATED AREAS OF SCIENCE AND TECHNOLOGY Prev   Next  

Non-peripherally octaalkyl-substituted nickel phthalocyanines used as non-dopant hole transport materials in perovskite solar cells

Fei Qi(齐飞)1,2, Bo Wu(吴波)1,2, Junyuan Xu(徐俊源)1,2, Qian Chen(陈潜)1,2, Haiquan Shan(单海权)1,2, Jiaju Xu(许家驹)1,2,†, and Zong-Xiang Xu(许宗祥)1,2,‡
1 Department of Chemistry, Southern University of Science and Technology, Shenzhen 518000, China;
2 Guangdong-Hong Kong-Macao Joint Laboratory for Photonic-Thermal-Electrical Energy Materials and Devices, Southern University of Science and Technology, Shenzhen 518000, China
Abstract  This report presents two non-perihperally octaalkyl-substituted nickel phthalocyanines (NiPcs), namely, NiEt2Pc and NiPr2Pc, for use as dopant-free hole transport materials in perovskite solar cells (PSCs). The length extension of the alkyl chains from ethyl to propyl significantly tunes the NiPcs' energy levels, thus reducing charge carrier recombination at the perovskite/hole transport layer (HTL) interface and leading to higher open-circuit voltage (VOC) and short-circuit current density (JSC) observed for the NiPr2Pc-based PSC. And higher charge carrier mobility, higher thin film crystallinity, and lower surface roughness of the NiPr2Pc HTL compared with that of the NiEt2Pc one also lead to higher JSC and fill factor (FF) observed for the NiPr2Pc-based device. Consequently, the NiPr2Pc-based PSC exhibits a higher power conversion efficiency (PCE) of 14.07% than that of the NiEt2Pc-based device (8.63%).
Keywords:  perovskite solar cells      metal phthalocyanines      hole transport layers  
Received:  01 June 2021      Revised:  28 June 2021      Accepted manuscript online:  18 July 2021
PACS:  88.40.hj (Efficiency and performance of solar cells)  
  73.40.-c (Electronic transport in interface structures)  
  81.20.-n (Methods of materials synthesis and materials processing)  
Fund: Project supported by the Shenzhen Overseas High-level Talents Innovation Plan of Technical Innovation (Grant No. KQJSCX20180323140712012) and the Major Program of Guangdong Basic and Applied Research (Grant No. 2019B121205001).
Corresponding Authors:  Jiaju Xu, Zong-Xiang Xu     E-mail:  xujj@sustech.edu.cn;xuzx@sustech.edu.cn

Cite this article: 

Fei Qi(齐飞), Bo Wu(吴波), Junyuan Xu(徐俊源), Qian Chen(陈潜), Haiquan Shan(单海权), Jiaju Xu(许家驹), and Zong-Xiang Xu(许宗祥) Non-peripherally octaalkyl-substituted nickel phthalocyanines used as non-dopant hole transport materials in perovskite solar cells 2021 Chin. Phys. B 30 108801

[1] Li C, Hu Q K, Chen Q, Yu W J, Xu J J and Xu Z X 2021 Org. Electron. 88 106018
[2] Kabir I and Mahmood S A 2019 Chin. Phys. B 28 128801
[3] Tian J Li H Wang H Zheng B Xue Y Liu X 2018 Chin. Phys. B 27 18810
[4] Kojima A, Teshima K, Shirai Y and Miyasaka T 2009 J. Am. Chem. Soc. 131 6050
[5] Tu Y, Wu J, Xu G, Yang X, Cai R, Gong Q, Zhu R and Huang W 2021 Adv. Mater. 33 2006545
[6] Bakr Z H, Wali Q, Fakharuddin A, Schmidt-Mende L, Brown T M and Jose R 2017 Nano Energy 34 271
[7] Ameen S, Rub M A, Kosa S A, Alamry K A, Akhtar M S, Shin H S, Seo H K, Asiri A M and Nazeeruddin M K 2016 ChemSusChem 9 10
[8] Rezaee E, Liu X, Hu Q, Dong L, Chen Q, Pan J H and Xu Z X 2018 Solar RRL 2 1800200
[9] Yang G, Wang Y L, Xu J J, Lei H W, Chen C, Shan H Q, Liu X Y, Xu Z X and Fang G J 2017 Nano Energy 31 322
[10] Jiang Q, Zhao Y, Zhang X, Yang X, Chen Y, Chu Z, Ye Q, Li X, Yin Z and You J 2019 Nat. Photon. 13 460
[11] Reddy G, Devulapally K, Islavath N and Giribabu L 2019 Chem. Rec. 19 2157
[12] Wang Y, Ye W, Yang X, Rezaee E, Shan H, Yang S, Cai S, Pan J H, Xu J and Xu Z X 2020 Synth. Met. 259 116248
[13] Seo J, Jeon N J, Yang W S, Shin H W, Ahn T K, Lee J, Noh J H and Seok S I 2015 Adv. Energ. Mater. 5 1501320
[14] Dao Q D, Fujii A, Tsuji R, Takeoka Y and Ozaki M 2017 Org. Electron. 43 156
[15] Wang Y, Liu X, Shan H, Chen Q, Liu T, Sun X, Ma D, Zhang Z, Xu J and Xu Z X 2017 Dyes Pigm. 139 619
[16] Feng Y, Hu Q, Rezaee E, Li M, Xu Z X, Lorenzoni A, Mercuri F and Muccini M 2019 Adv. Energy Mater. 9 1901019
[17] Xu H, Chen R, Sun Q, Lai W, Su Q, Huang W and Liu X 2014 Chem. Soc. Rev. 43 3259
[18] Shan H, Wang Y, Li C, Hu Q, Sun X, Dong L, Feng Y, Ye W, Xu J and Xu Z X 2018 Org. Electron. 58 197
[19] Wang Y L, Shan H Q, Sun X Z, Dong L, Feng Y M, Hu Q K, Ye W K, Roy V A L, Xu J J and Xu Z X 2018 Org. Electron. 55 15
[20] Zheng L P, Xu J J, Feng Y M, Shan H Q, Fang G J and Xu Z X 2018 J. Mater. Chem. C 6 11471
[21] Chen Q, Yang S, Dong L, Cai S, Xu J and Xu Z 2019 Chin. Phys. B 29 017302
[22] Hu Q, Rezaee E, Dong L, Dong Q, Shan H, Chen Q, Li M, Cai S, Wang L and Xu Z X Solar RRL 0 1900182
[23] Xu J J, Wang Y L, Shan H Q, Lin Y W, Chen Q, Roy V A L and Xu Z X 2016 ACS Appl. Mater. Interfaces 8 18991
[24] Xu J J, Wang Y L, Chen Q, Lin Y W, Shan H Q, Roy V A L and Xu Z X 2016 J. Mater. Chem. C 4 7377
[25] Xu Z X, Roy V A L, Low K H and Che C M 2011 Chem. Commun. 47 9654
[26] Hu Q, Rezaee E, Dong Q, Shan H, Chen Q, Wang L, Liu B, Pan J H and Xu Z X 2019 Solar RRL 3 1800264
[27] Ghani F, Kristen J and Riegler H 2012 J. Chem. Eng. Data 57 439
[28] Hu Q, Rezaee E, Li M, Chen Q, Cao Y, Mayukh M, McGrath D V and Xu Z X 2019 ACS Appl. Mater. Interfaces 11 36535
[29] Wang Y, Zheng X, Liu X, Feng Y, Shan H, Dong L, Fang G and Xu Z X 2018 Org. Electron. 56 276
[30] Zheng X, Wang Y, Hu J, Yang G, Guo Z, Xia J, Xu Z and Fang G 2017 J. Mater. Chem. A 5 24416
[31] Liu X, Wang Y, Rezaee E, Chen Q, Feng Y, Sun X, Dong L, Hu Q, Li C and Xu Z X 2018 Solar RRL 2 1800050
[32] Zhang C, Lu Y N, Wu W Q and Wang L 2021 Nano Energy 81 105634
[33] Wetzelaer G J A H, Scheepers M, Sempere A M, Momblona C, Ávila J and Bolink H J 2015 Adv. Mater. 27 1837
[34] Qin P L, He Q, Chen C, Zheng X L, Yang G, Tao H, Xiong L B, Xiong L, Li G and Fang G J 2017 Solar RRL 1 1700058
[1] Improving efficiency of inverted perovskite solar cells via ethanolamine-doped PEDOT:PSS as hole transport layer
Zi-Jun Wang(王子君), Jia-Wen Li(李嘉文), Da-Yong Zhang(张大勇), Gen-Jie Yang(杨根杰), and Jun-Sheng Yu(于军胜). Chin. Phys. B, 2022, 31(8): 087802.
[2] Charge transfer modification of inverted planar perovskite solar cells by NiOx/Sr:NiOx bilayer hole transport layer
Qiaopeng Cui(崔翘鹏), Liang Zhao(赵亮), Xuewen Sun(孙学文), Qiannan Yao(姚倩楠), Sheng Huang(黄胜), Lei Zhu(朱磊), Yulong Zhao(赵宇龙), Jian Song(宋健), and Yinghuai Qiang(强颖怀). Chin. Phys. B, 2022, 31(3): 038801.
[3] Surface modulation of halide perovskite films for efficient and stable solar cells
Qinxuan Dai(戴沁煊), Chao Luo(骆超), Xianjin Wang(王显进), Feng Gao(高峰), Xiaole Jiang(姜晓乐), and Qing Zhao(赵清). Chin. Phys. B, 2022, 31(3): 037303.
[4] Nano Ag-enhanced photoelectric conversion efficiency in all-inorganic, hole-transporting-layer-free CsPbIBr2 perovskite solar cells
Youming Huang(黄友铭), Yizhi Wu(吴以治), Xiaoliang Xu(许小亮), Feifei Qin(秦飞飞), Shihan Zhang(张诗涵), Jiakai An(安嘉凯), Huijie Wang(王会杰), and Ling Liu(刘玲). Chin. Phys. B, 2022, 31(12): 128802.
[5] Could two-dimensional perovskites fundamentally solve the instability of perovskite photovoltaics
Luoran Chen(陈烙然), Hu Wang(王虎), and Yuchuan Shao(邵宇川). Chin. Phys. B, 2022, 31(11): 117803.
[6] Sputtered SnO2 as an interlayer for efficient semitransparent perovskite solar cells
Zheng Fang(方正), Liu Yang(杨柳), Yongbin Jin(靳永斌), Kaikai Liu(刘凯凯), Huiping Feng(酆辉平), Bingru Deng(邓冰如), Lingfang Zheng(郑玲芳), Changcai Cui(崔长彩), Chengbo Tian(田成波), Liqiang Xie(谢立强), Xipeng Xu(徐西鹏), and Zhanhua Wei(魏展画). Chin. Phys. B, 2022, 31(11): 118801.
[7] Recent advances of interface engineering in inverted perovskite solar cells
Shiqi Yu(余诗琪), Zhuang Xiong(熊壮), Zhenhan Wang(王振涵), Haitao Zhou(周海涛), Fei Ma(马飞), Zihan Qu(瞿子涵), Yang Zhao(赵洋), Xinbo Chu(楚新波), and Jingbi You(游经碧). Chin. Phys. B, 2022, 31(10): 107307.
[8] Improved efficiency and stability of perovskite solar cells with molecular ameliorating of ZnO nanorod/perovskite interface and Mg-doping ZnO
Zhenyun Zhang(张振雲), Lei Xu(许磊), and Junjie Qi(齐俊杰). Chin. Phys. B, 2021, 30(3): 038801.
[9] Two-step processed efficient perovskite solar cells via improving perovskite/PTAA interface using solvent engineering in PbI2 precursor
Cao-Yu Long(龙操玉), Ning Wang(王宁), Ke-Qing Huang(黄可卿), Heng-Yue Li(李恒月), Biao Liu(刘标), Jun-Liang Yang(阳军亮). Chin. Phys. B, 2020, 29(4): 048801.
[10] Effect of carrier mobility on performance of perovskite solar cells
Yi-Fan Gu(顾一帆), Hui-Jing Du(杜会静), Nan-Nan Li(李楠楠), Lei Yang(杨蕾), Chun-Yu Zhou(周春宇). Chin. Phys. B, 2019, 28(4): 048802.
[11] Factors influencing the performance of paintable carbon-based perovskite solar cells fabricated in ambient air
Wei-Kang Xu(许伟康), Feng-Xiang Chen(陈凤翔), Gong-Hui Cao(曹功辉), Jia-Qi Wang(王嘉绮), Li-Sheng Wang(汪礼胜). Chin. Phys. B, 2018, 27(3): 038402.
[12] Novel hole transport layer of nickel oxide composite with carbon for high-performance perovskite solar cells
Sajid, A M Elseman, Jun Ji(纪军), Shangyi Dou(窦尚轶), Hao Huang(黄浩), Peng Cui(崔鹏), Dong Wei(卫东), Meicheng Li(李美成). Chin. Phys. B, 2018, 27(1): 017305.
[13] Importance of ligands on TiO2 nanocrystals for perovskite solar cells
Yao Zhao(赵耀), Yi-Cheng Zhao(赵怡程), Wen-Ke Zhou(周文可), Rui Fu(伏睿), Qi Li(李琪), Da-Peng Yu(俞大鹏), Qing Zhao(赵清). Chin. Phys. B, 2018, 27(1): 018401.
[14] O3 fast and simple treatment-enhanced p-doped in Spiro-MeOTAD for CH3NH3I vapor-assisted processed CH3NH3PbI3 perovskite solar cells
En-Dong Jia(贾恩东), Xi Lou(娄茜), Chun-Lan Zhou(周春兰), Wei-Chang Hao(郝维昌), Wen-Jing Wang(王文静). Chin. Phys. B, 2017, 26(6): 068803.
[15] Improving power conversion efficiency of perovskite solar cells by cooperative LSPR of gold-silver dual nanoparticles
Peng Liu(刘鹏), Bing-chu Yang(杨兵初), Gang Liu(刘钢), Run-sheng Wu(吴闰生), Chu-jun Zhang(张楚俊), Fang Wan(万方), Shui-gen Li(李水根), Jun-liang Yang(阳军亮), Yong-li Gao(高永立), Cong-hua Zhou(周聪华). Chin. Phys. B, 2017, 26(5): 058401.
No Suggested Reading articles found!