Please wait a minute...
Chin. Phys. B, 2022, Vol. 31(3): 037303    DOI: 10.1088/1674-1056/ac1fe0
Special Issue: SPECIAL TOPIC — Emerging photovoltaic materials and devices
TOPICAL REVIEW—Emerging photovoltaic materials and devices Prev   Next  

Surface modulation of halide perovskite films for efficient and stable solar cells

Qinxuan Dai(戴沁煊)1,2,†, Chao Luo(骆超)2,†, Xianjin Wang(王显进)2, Feng Gao(高峰)2, Xiaole Jiang(姜晓乐)1, and Qing Zhao(赵清)2,3,‡
1 Key Laboratory of General Chemistry of the National Ethnic Affairs Commission, School of Chemistry and Environment, Southwest Minzu University, Chengdu 610041, China;
2 State Key Laboratory for Mesoscopic Physics and Frontiers Science Center for Nano-optoelectronics, School of Physics, Peking University, Beijing 100871, China;
3 Peking University Yangtze Delta Institute of Optoelectronics, Nantong 226010, China
Abstract  As the main distribution place of deep-level defects and the entrance of water, the interface is critical to determining both the power conversion efficiency (PCE) and the stability of perovskite solar cells (PSCs). Suitable interface design can dramatically passivate interface defects and optimize energy level alignment for suppressing the nonradiative recombination and effectively extracting the photogenerated carriers towards higher PCE. Meanwhile, a proper interface design can also block the interface diffusion of ions for high operational stability. Therefore, interface modification is of great significance to make the PSCs more efficient and stable. Upon optimized material choices, the three-dimensional halide perovskite graded junction layer, low-dimensional halide perovskite interface layer and organic salt passivation layer have been constructed on perovskite films for superior PSCs, yet a systematic review of them is missing. Thus, a guide and summary of recent advances in modulating the perovskite films interface is necessary for the further development of more efficient interface modification.
Keywords:  perovskite solar cells      interfacial engineering      surface modulation      organic salt surface layer  
Received:  20 June 2021      Revised:  19 July 2021      Accepted manuscript online:  22 August 2021
PACS:  73.40.Lq (Other semiconductor-to-semiconductor contacts, p-n junctions, and heterojunctions)  
  68.65.-k (Low-dimensional, mesoscopic, nanoscale and other related systems: structure and nonelectronic properties)  
  68.35.-p (Solid surfaces and solid-solid interfaces: structure and energetics)  
  81.05.Hd (Other semiconductors)  
Fund: This work is supported by the National Key Research and Development Program of China (Grant Nos. 2019YFA0707003 and 2019YFE0114100), the National Natural Science Foundation of China (Grant No. 51872007), and Beijing Municipal Natural Science Foundation, China (Grant No. 7202094).
Corresponding Authors:  Qing Zhao     E-mail:

Cite this article: 

Qinxuan Dai(戴沁煊), Chao Luo(骆超), Xianjin Wang(王显进), Feng Gao(高峰), Xiaole Jiang(姜晓乐), and Qing Zhao(赵清) Surface modulation of halide perovskite films for efficient and stable solar cells 2022 Chin. Phys. B 31 037303

[1] Bu T, Liu X, Zhou Y, Yi J, Huang X, Luo L, Xiao J, Ku Z, Peng Y, Huang F, Cheng Y B and Zhong J 2017 Energy & Environmental Science 10 2509
[2] Lin Q, Armin A, Burn P L and Meredith P 2016 Acc Chem. Res. 49 545
[3] Jena A K, Kulkarni A and Miyasaka T 2019 Chem. Rev. 119 3036
[4] Yang X, Fu Y, Su R, Zheng Y, Zhang Y, Yang W, Yu M, Chen P, Wang Y, Wu J, Luo D, Tu Y, Zhao L, Gong Q and Zhu R 2020 Adv. Mater. 32 e2002585
[5] Lim J, Hörantner M T, Sakai N, Ball J M, Mahesh S, Noel N K, Lin Y H, Patel J B, McMeekin D P, Johnston M B, Wenger B and Snaith H J 2019 Energy & Environmental Science 12 169
[6] Quarti C, Mosconi E, Ball J M, D'Innocenzo V, Tao C, Pathak S, Snaith H J, Petrozza A and De Angelis F 2016 Energy & Environmental Science 9 155
[7] Shi D, Adinolfi V, Comin R, Yuan M, Alarousu E, Buin A, Chen Y, Hoogland S, Rothenberger A, Katsiev K, Losovyj Y, Zhang X, Dowben P A, Mohammed O F, Sargent E H and Bakr O M 2015 Science 347 519
[8] Luo C, Yan C, Li W, Chun F J, Xie M L, Zhu Z H, Gao Y, Guo B L and Yang W Q 2020 Advanced Functional Materials 30 2000026
[9] Yang J, Zhang P, Wang J and Wei S 2020 Chin. Phys. B 29 108401
[10] Green M A, Ho-Baillie A and Snaith H J 2014 Nat. Photon. 8 506
[11] Rong Y, Hu Y, Mei A, Tan H, Saidaminov M I, Seok S I, McGehee M D, Sargent E H and Han H 2018 Science 361 eaat8235
[12] Kojima A, Teshima K, Shirai Y and Miyasaka T 2009 J. Am. Chem. Soc. 131 6050
[13] Wu Y, Islam A, Yang X, Qin C, Liu J, Zhang K, Peng W and Han L 2014 Energy Environ. Sci. 7 2934
[14] Xiao Z, Dong Q, Bi C, Shao Y, Yuan Y and Huang J 2014 Adv. Mater. 26 6503
[15] Rong Y, Tang Z, Zhao Y, Zhong X, Venkatesan S, Graham H, Patton M, Jing Y, Guloy A M and Yao Y 2015 Nanoscale 7 10595
[16] Burschka J, Pellet N, Moon S J, Humphry-Baker R, Gao P, Nazeeruddin M K and Gratzel M 2013 Nature 499 316
[17] Zhou Z, Wang Z, Zhou Y, Pang S, Wang D, Xu H, Liu Z, Padture N P and Cui G 2015 Angew. Chem. Int. Ed. Engl. 54 9705
[18] Liang Z, Yang B, Mei A, Lin S, Han H, Yuan Y, Xie H, Gao Y and Zhou C 2020 Chin. Phys. B 29 078401
[19] NREL 2020
[20] Yoo J J, Seo G, Chua M R, Park T G, Lu Y, Rotermund F, Kim Y K, Moon C S, Jeon N J, Correa-Baena J P, Bulović V, Shin S S, Bawendi M G and Seo J 2021 Nature 590 587
[21] Jeong J, Kim M, Seo J, et al. 2021 Nature 592 381
[22] Etgar L, Gao P, Xue Z, Peng Q, Chandiran A K, Liu B, Nazeeruddin M K and Gratzel M 2012 J. Am. Chem. Soc. 134 17396
[23] Kim H S, Lee C R, Im J H, Lee K B, Moehl T, Marchioro A, Moon S J, Humphry-Baker R, Yum J H, Moser J E, Gratzel M and Park N G 2012 Sci. Rep. 2 591
[24] Grancini G, Roldán-Carmona C, Zimmermann I, Mosconi E, Lee X, Martineau D, Narbey S, Oswald F, De Angelis F, Graetzel M and Nazeeruddin M K 2017 Nat. Commun. 8 15684
[25] Turren-Cruz S H, Hagfeldt A and Saliba M 2018 Science 362 449
[26] Bai S, Da P, Li C, Wang Z, Yuan Z, Fu F, Kawecki M, Liu X, Sakai N, Wang J T W, Huettner S, Buecheler S, Fahlman M, Gao F and Snaith H J 2019 Nature 571 245
[27] Wang Y, Wu T, Barbaud J, Kong W, Cui D, Chen H, Yang X and Han L 2019 Science 365 687
[28] Lin Y H, Sakai N, Da P, et al. 2020 Science 369 96
[29] Mei A, Sheng Y, Ming Y, Hu Y, Rong Y, Zhang W, Luo S, Na G, Tian C, Hou X, Xiong Y, Zhang Z, Liu S, Uchida S, Kim T W, Yuan Y, Zhang L, Zhou Y and Han H 2020 Joule 4 1
[30] Aberle A G 2000 Progress in Photovoltaics:Research and Applications 8 473
[31] Hong C Y, Huang G F, Yao W W, Deng J J and Liu X L 2019 Chin. Phys. B 28 128502
[32] Liu X C, Ma J J, Xie H Y, Ma P, Chen L, Guo M and Zhang W R 2020 Chin. Phys. B 29 028501
[33] Ogomi Y, Morita A, Tsukamoto S, Saitho T, Shen Q, Toyoda T, Yoshino K, Pandey S S, Ma T and Hayase S 2014 J. Phys. Chem. C 118 16651
[34] Zhou H, Chen Q, Li G, Luo S, Song T B, Duan H S, Hong Z, You J, Liu Y and Yang Y 2014 Science 345 542
[35] Tan H, Jain A, Voznyy O, Lan X, García de Arquer F P, Fan J Z, Quintero-Bermudez R, Yuan M, Zhang B, Zhao Y, Fan F, Li P, Quan L N, Zhao Y, Lu Z H, Yang Z, Hoogland S and Sargent E H 2017 Science 355 722
[36] Wang Y, Cui D, Zhang C, Han L and Yang X 2019 Acta Phys. Sin. 68 158401 (in Chinese)
[37] Long C, Wang N, Huang K, Li H, Liu B and Yang J 2020 Chin. Phys. B 29 048801
[38] Wojciechowski K, Stranks S D, Abate A, Sadoughi G, Sadhanala A, Kopidakis N, Rumbles G, Li C Z, Friend R H, Jen A K Y and Snaith H J 2014 ACS Nano 8 12701
[39] Hou Y, Du X, Scheiner S, et al. 2017 Science 358 1192
[40] Arora N, Dar M I, Hinderhofer A, Pellet N, Schreiber F, Zakeeruddin S M and Grätzel M 2017 Science 358 768
[41] Xue J, Wang R and Yang Y 2020 Nat. Rev. Mater. 5 809
[42] Cao Y, Bai J and Feng H 2020 Chin. Phys. Lett. 37 107301
[43] Yang X, Luo D, Xiang Y, et al. 2021 Adv. Mater. 33 2006435
[44] Jiang Q, Zhao Y, Zhang X, Yang X, Chen Y, Chu Z, Ye Q, Li X, Yin Z and You J 2019 Nat. Photon. 13 460
[45] Luo D, Yang W, Wang Z, et al. 2018 Science 360 1442
[46] Wang Y, Dar M I, Ono L K, Zhang T, Kan M, Li Y, Zhang L, Wang X, Yang Y, Gao X, Qi Y, Grätzel M and Zhao Y 2019 Science 365 591
[47] Jung E H, Jeon N J, Park E Y, Moon C S, Shin T J, Yang T Y, Noh J H and Seo J 2019 Nature 567 511
[48] Li B, Zhang Y, Zhang L and Yin L 2017 Adv. Mater. 29 1701221
[49] Yuan J, Bi C, Xi J, Guo R and Tian J 2021 J. Phys. Chem. Lett. 12 1018
[50] Cheng F, He R, Nie S, Zhang C, Yin J, Li J, Zheng N and Wu B 2021 J. Am. Chem. Soc. 143 5855
[51] Zhang Y N, Li B, Fu L, Zou Y, Li Q and Yin L W 2019 Sol. Energy Mater Sol. Cells 194 168
[52] Liu J, Zhou Q, Thein N K, Tian L, Jia D, Johansson E M J and Zhang X 2019 Journal of Materials Chemistry A 7 13777
[53] Ruan W, Zhang Z, Hu Y, Bai F, Qiu T and Zhang S 2019 Appl. Surf. Sci. 465 420
[54] Sun H, Deng K, Xiong J and Li L 2020 Advanced Energy Materials 10 1903347
[55] Lu Y N, Zhong J X, Yu Y, Chen X, Yao C Y, Zhang C, Yang M, Feng W, Jiang Y, Tan Y, Gong L, Wei X, Zhou Y, Wang L and Wu W Q 2021 Energy & Environmental Science 14 4048
[56] Hu J, Wang C, Qiu S, Zhao Y, Gu E, Zeng L, Yang Y, Li C, Liu X, Forberich K, Brabec C J, Nazeeruddin M K, Mai Y and Guo F 2020 Advanced Energy Materials 10 2000173
[57] Mahmud M A, Duong T, Yin Y, Pham H T, Walter D, Peng J, Wu Y, Li L, Shen H, Wu N, Mozaffari N, Andersson G, Catchpole K R, Weber K J and White T P 2019 Adv. Funct. Mater. 30 1907962
[58] Hu Y, Schlipf J, Wussler M, Petrus M L, Jaegermann W, Bein T, Muller-Buschbaum P and Docampo P 2016 ACS Nano 10 5999
[59] Liu Y, Akin S, Pan L, Uchida R and Grtzel M 2019 Science Advances 5 eaaw2543
[60] Chen X, Xia Y, Huang Q, Li Z, Mei A, Hu Y, Wang T, Cheacharoen R, Rong Y and Han H 2021 Advanced Energy Materials 11 2100292
[61] Huang Z, Hu X, Liu C, Meng X, Huang Z, Yang J, Duan X, Long J, Zhao Z, Tan L, Song Y and Chen Y 2019 Adv. Funct. Mater. 29 1902629
[62] Yoo J J, Wieghold S, Sponseller M C, Chua M R, Bertram S N, Hartono N T P, Tresback J S, Hansen E C, Correa-Baena J P, Bulović V, Buonassisi T, Shin S S and Bawendi M G 2019 Energy & Environmental Science 12 2192
[63] Jang Y W, Lee S, Yeom K M, Jeong K, Choi K, Choi M and Noh J H 2021 Nature Energy 6 63
[64] Zheng X, Chen B, Dai J, Fang Y, Bai Y, Lin Y, Wei H, Zeng Xiao C and Huang J 2017 Nature Energy 2 17102
[65] Nan L, Zhu Z, Dong Q, Li J and Wang L 2017 Advanced Materials Interfaces 4 1700598
[66] Yoo H S and Park N G 2018 Sol. Energy Mater Sol. Cells 179 57
[67] Zhuang J, Mao P, Luan Y, Yi X, Tu Z, Zhang Y, Yi Y, Wei Y, Chen N, Lin T, Wang F, Li C and Wang J 2019 ACS Energy Letters 4 2913
[68] Yang B, Suo J, Mosconi E, Ricciarelli D, Tress W, Agelis F D, Kim H S and Hagfeldt A 2020 ACS Energy Letters 5 3159
[69] Hawash Z, Raga S R, Son D Y, Ono L K, Park N G and Qi Y 2017 J. Phys. Chem. Lett. 8 3947
[70] Zhu H, Liu Y, Eickemeyer F T, Pan L, Ren D, Ruiz-Preciado M A, Carlsen B, Yang B, Dong X, Wang Z, Liu H, Wang S, Zakeeruddin S M, Hagfeldt A, Dar M I, Li X and Gratzel M 2020 Adv. Mater. 32 e1907757
[71] Zhu H, Ren Y, Pan L, Ouellette O, Eickemeyer F T, Wu Y, Li X, Wang S, Liu H, Dong X, Zakeeruddin S M, Liu Y, Hagfeldt A and Gratzel M 2021 J. Am. Chem. Soc. 143 3231
[72] Yang S, Wang Y, Liu P, Cheng Y B, Zhao H J and Yang H G 2016 Nature Energy 1 15016
[73] Cao F, Wang M and Li L 2020 Nano Select 1 152
[74] Mei A, Li X, Liu L, Ku Z, Liu T, Rong Y, Xu M, Hu M, Chen J, Yang Y, Grätzel M and Han H 2014 Science 345 295
[75] Herz L M 2017 ACS Energy Letters 2 1539
[76] Jiang S, Sheng Y, Hu Y, Rong Y, Mei A and Han H 2020 Frontiers of Optoelectronics 13 256
[77] Noh J H, Im S H, Heo J H, Mandal T N and Seok S I 2013 Nano Lett. 13 1764
[78] Chung I, Song J H, Im J, Androulakis J, Malliakas C D, Li H, Freeman A J, Kenney J T and Kanatzidis M G 2012 J. Am. Chem. Soc. 134 8579
[79] Wang Q, Shao Y, Xie H, Lyu L, Liu X, Gao Y and Huang J 2014 Appl. Phys. Lett. 105 163508
[80] Paul G, Chatterjee S, Bhunia H and Pal A J 2018 J. Phys. Chem. C 122 20194
[81] Huang L, Bu S, Zhang D, Peng R, Wei Q, Ge Z and Zhang J 2019 Solar RRL 3 1800274
[82] Noel N K, Habisreutinger S N, Pellaroque A, Pulvirenti F, Wenger B, Zhang F, Lin Y H, Reid O G, Leisen J, Zhang Y, Barlow S, Marder S R, Kahn A, Snaith H J, Arnold C B and Rand B P 2019 Energy & Environmental Science 12 3063
[83] Saparov B and Mitzi D B 2016 Chem. Rev. 116 4558
[84] Misra R K, Cohen B E, Iagher L and Etgar L 2017 ChemSusChem 10 3712
[85] Tsai H, Nie W, Blancon J C, Stoumpos C C, Asadpour R, Harutyunyan B, Neukirch A J, Verduzco R, Crochet J J, Tretiak S, Pedesseau L, Even J, Alam M A, Gupta G, Lou J, Ajayan P M, Bedzyk M J and Kanatzidis M G 2016 Nature 536 312
[86] Ren H, Yu S, Chao L, Xia Y, Sun Y, Zuo S, Li F, Niu T, Yang Y, Ju H, Li B, Du H, Gao X, Zhang J, Wang J, Zhang L, Chen Y and Huang W 2020 Nat. Photon. 14 154
[87] Wang N, Cheng L, Ge R, et al. 2016 Nat. Photon. 10 699
[88] Wang Y, Ma Z Z, Li Y, Zhang F, Chen X and Shi Z F 2021 Chin. Phys. B 30 067802
[89] Lei J, Tang Q, He J and Cai M 2021 Chin. Phys. B 30 038102
[90] Quintero-Bermudez R, Proppe A H, Mahata A, Todorovic P, Kelley S O, De Angelis F and Sargent E H 2019 J. Am. Chem. Soc. 141 13459
[91] Yuan H B, Zhang J, Yu L T, Guo T H, Zhang Z Q, Wang Y Y, Shang M H, Liu X H, Hu Z Y, Zhu Y J and Han L Y 2021 Small Methods 5 2001090
[92] Proppe A H, Johnston A, Teale S, Mahata A, Quintero-Bermudez R, Jung E H, Grater L, Cui T, Filleter T, Kim C Y, Kelley S O, De Angelis F and Sargent E H 2021 Nat. Commun. 12 3472
[93] Zhang F, Kim D H, Lu H, Park J S, Larson B W, Hu J, Gao L, Xiao C, Reid O G, Chen X, Zhao Q, Ndione P F, Berry J J, You W, Walsh A, Beard M C and Zhu K 2019 J. Am. Chem. Soc. 141 5972
[94] Cho K T, Zhang Y, Orlandi S, Cavazzini M, Zimmermann I, Lesch A, Tabet N, Pozzi G, Grancini G and Nazeeruddin M K 2018 Nano Lett. 18 5467
[95] Sutanto A A, Caprioglio P, Drigo N, Hofstetter Y J, Garcia-Benito I, Queloz V I E, Neher D, Nazeeruddin M K, Stolterfoht M, Vaynzof Y and Grancini G 2021 Chem 7 1903
[96] Tan S, Huang T, Yavuz I, Wang R, Weber M H, Zhao Y, Abdelsamie M, Liao M E, Wang H C, Huynh K, Wei K H, Xue J, Babbe F, Goorsky M S, Lee J W, Sutter-Fella C M and Yang Y 2021 J. Am. Chem. Soc. 143 6781
[97] Wang F, Geng W, Zhou Y, Fang H H, Tong C J, Loi M A, Liu L M and Zhao N 2016 Adv. Mater. 28 9986
[98] Li C, Li H, Zhu Z, Cui N, Tan Z A and Yang R 2021 Solar RRL 5 2000519
[99] Li N, Zhu Z, Chueh C C, Liu H, Peng B, Petrone A, Li X, Wang L and Jen A K Y 2017 Advanced Energy Materials 7 1601307
[100] Yang S, Dai J, Yu Z, Shao Y, Zhou Y, Xiao X, Zeng X C and Huang J 2019 J. Am. Chem. Soc. 141 5781
[101] Lu H, Liu Y, Ahlawat P, et al. 2020 Science 370 abb8985
[102] Song Y, Li L, Bi W, Hao M, Kang Y, Wang A, Wang Z, Li H, Li X, Fang Y, Yang D and Dong Q 2020 Research 2020 5958243
[103] Oliver R, Lin Y H, Horn A J, Xia C Q and Snaith H J 2020 ACS Energy Letters 5 3336
[104] Li J, Bu T, Lin Z, Mo Y and Huang F 2020 Chem. Eng. J 405 126712
[105] Yang S, Chen S, Mosconi E, Fang Y, Xiao X, Wang C, Zhou Y, Yu Z, Zhao J and Gao Y 2019 Science 365 473
[1] Improving efficiency of inverted perovskite solar cells via ethanolamine-doped PEDOT:PSS as hole transport layer
Zi-Jun Wang(王子君), Jia-Wen Li(李嘉文), Da-Yong Zhang(张大勇), Gen-Jie Yang(杨根杰), and Jun-Sheng Yu(于军胜). Chin. Phys. B, 2022, 31(8): 087802.
[2] Charge transfer modification of inverted planar perovskite solar cells by NiOx/Sr:NiOx bilayer hole transport layer
Qiaopeng Cui(崔翘鹏), Liang Zhao(赵亮), Xuewen Sun(孙学文), Qiannan Yao(姚倩楠), Sheng Huang(黄胜), Lei Zhu(朱磊), Yulong Zhao(赵宇龙), Jian Song(宋健), and Yinghuai Qiang(强颖怀). Chin. Phys. B, 2022, 31(3): 038801.
[3] Nano Ag-enhanced photoelectric conversion efficiency in all-inorganic, hole-transporting-layer-free CsPbIBr2 perovskite solar cells
Youming Huang(黄友铭), Yizhi Wu(吴以治), Xiaoliang Xu(许小亮), Feifei Qin(秦飞飞), Shihan Zhang(张诗涵), Jiakai An(安嘉凯), Huijie Wang(王会杰), and Ling Liu(刘玲). Chin. Phys. B, 2022, 31(12): 128802.
[4] Could two-dimensional perovskites fundamentally solve the instability of perovskite photovoltaics
Luoran Chen(陈烙然), Hu Wang(王虎), and Yuchuan Shao(邵宇川). Chin. Phys. B, 2022, 31(11): 117803.
[5] Sputtered SnO2 as an interlayer for efficient semitransparent perovskite solar cells
Zheng Fang(方正), Liu Yang(杨柳), Yongbin Jin(靳永斌), Kaikai Liu(刘凯凯), Huiping Feng(酆辉平), Bingru Deng(邓冰如), Lingfang Zheng(郑玲芳), Changcai Cui(崔长彩), Chengbo Tian(田成波), Liqiang Xie(谢立强), Xipeng Xu(徐西鹏), and Zhanhua Wei(魏展画). Chin. Phys. B, 2022, 31(11): 118801.
[6] Recent advances of interface engineering in inverted perovskite solar cells
Shiqi Yu(余诗琪), Zhuang Xiong(熊壮), Zhenhan Wang(王振涵), Haitao Zhou(周海涛), Fei Ma(马飞), Zihan Qu(瞿子涵), Yang Zhao(赵洋), Xinbo Chu(楚新波), and Jingbi You(游经碧). Chin. Phys. B, 2022, 31(10): 107307.
[7] Improved efficiency and stability of perovskite solar cells with molecular ameliorating of ZnO nanorod/perovskite interface and Mg-doping ZnO
Zhenyun Zhang(张振雲), Lei Xu(许磊), and Junjie Qi(齐俊杰). Chin. Phys. B, 2021, 30(3): 038801.
[8] Extended phase diagram of La1-xCaxMnO3 by interfacial engineering
Kexuan Zhang(张可璇), Lili Qu(屈莉莉), Feng Jin(金锋), Guanyin Gao(高关胤), Enda Hua(华恩达), Zixun Zhang(张子璕), Lingfei Wang(王凌飞), and Wenbin Wu(吴文彬). Chin. Phys. B, 2021, 30(12): 126802.
[9] Non-peripherally octaalkyl-substituted nickel phthalocyanines used as non-dopant hole transport materials in perovskite solar cells
Fei Qi(齐飞), Bo Wu(吴波), Junyuan Xu(徐俊源), Qian Chen(陈潜), Haiquan Shan(单海权), Jiaju Xu(许家驹), and Zong-Xiang Xu(许宗祥). Chin. Phys. B, 2021, 30(10): 108801.
[10] Two-step processed efficient perovskite solar cells via improving perovskite/PTAA interface using solvent engineering in PbI2 precursor
Cao-Yu Long(龙操玉), Ning Wang(王宁), Ke-Qing Huang(黄可卿), Heng-Yue Li(李恒月), Biao Liu(刘标), Jun-Liang Yang(阳军亮). Chin. Phys. B, 2020, 29(4): 048801.
[11] Effect of carrier mobility on performance of perovskite solar cells
Yi-Fan Gu(顾一帆), Hui-Jing Du(杜会静), Nan-Nan Li(李楠楠), Lei Yang(杨蕾), Chun-Yu Zhou(周春宇). Chin. Phys. B, 2019, 28(4): 048802.
[12] Factors influencing the performance of paintable carbon-based perovskite solar cells fabricated in ambient air
Wei-Kang Xu(许伟康), Feng-Xiang Chen(陈凤翔), Gong-Hui Cao(曹功辉), Jia-Qi Wang(王嘉绮), Li-Sheng Wang(汪礼胜). Chin. Phys. B, 2018, 27(3): 038402.
[13] Novel hole transport layer of nickel oxide composite with carbon for high-performance perovskite solar cells
Sajid, A M Elseman, Jun Ji(纪军), Shangyi Dou(窦尚轶), Hao Huang(黄浩), Peng Cui(崔鹏), Dong Wei(卫东), Meicheng Li(李美成). Chin. Phys. B, 2018, 27(1): 017305.
[14] Importance of ligands on TiO2 nanocrystals for perovskite solar cells
Yao Zhao(赵耀), Yi-Cheng Zhao(赵怡程), Wen-Ke Zhou(周文可), Rui Fu(伏睿), Qi Li(李琪), Da-Peng Yu(俞大鹏), Qing Zhao(赵清). Chin. Phys. B, 2018, 27(1): 018401.
[15] O3 fast and simple treatment-enhanced p-doped in Spiro-MeOTAD for CH3NH3I vapor-assisted processed CH3NH3PbI3 perovskite solar cells
En-Dong Jia(贾恩东), Xi Lou(娄茜), Chun-Lan Zhou(周春兰), Wei-Chang Hao(郝维昌), Wen-Jing Wang(王文静). Chin. Phys. B, 2017, 26(6): 068803.
No Suggested Reading articles found!