Special Issue:
SPECIAL TOPIC — Emerging photovoltaic materials and devices
|
TOPICAL REVIEW—Emerging photovoltaic materials and devices |
Prev
Next
|
|
|
Surface modulation of halide perovskite films for efficient and stable solar cells |
Qinxuan Dai(戴沁煊)1,2,†, Chao Luo(骆超)2,†, Xianjin Wang(王显进)2, Feng Gao(高峰)2, Xiaole Jiang(姜晓乐)1, and Qing Zhao(赵清)2,3,‡ |
1 Key Laboratory of General Chemistry of the National Ethnic Affairs Commission, School of Chemistry and Environment, Southwest Minzu University, Chengdu 610041, China; 2 State Key Laboratory for Mesoscopic Physics and Frontiers Science Center for Nano-optoelectronics, School of Physics, Peking University, Beijing 100871, China; 3 Peking University Yangtze Delta Institute of Optoelectronics, Nantong 226010, China |
|
|
Abstract As the main distribution place of deep-level defects and the entrance of water, the interface is critical to determining both the power conversion efficiency (PCE) and the stability of perovskite solar cells (PSCs). Suitable interface design can dramatically passivate interface defects and optimize energy level alignment for suppressing the nonradiative recombination and effectively extracting the photogenerated carriers towards higher PCE. Meanwhile, a proper interface design can also block the interface diffusion of ions for high operational stability. Therefore, interface modification is of great significance to make the PSCs more efficient and stable. Upon optimized material choices, the three-dimensional halide perovskite graded junction layer, low-dimensional halide perovskite interface layer and organic salt passivation layer have been constructed on perovskite films for superior PSCs, yet a systematic review of them is missing. Thus, a guide and summary of recent advances in modulating the perovskite films interface is necessary for the further development of more efficient interface modification.
|
Received: 20 June 2021
Revised: 19 July 2021
Accepted manuscript online: 22 August 2021
|
PACS:
|
73.40.Lq
|
(Other semiconductor-to-semiconductor contacts, p-n junctions, and heterojunctions)
|
|
68.65.-k
|
(Low-dimensional, mesoscopic, nanoscale and other related systems: structure and nonelectronic properties)
|
|
68.35.-p
|
(Solid surfaces and solid-solid interfaces: structure and energetics)
|
|
81.05.Hd
|
(Other semiconductors)
|
|
Fund: This work is supported by the National Key Research and Development Program of China (Grant Nos. 2019YFA0707003 and 2019YFE0114100), the National Natural Science Foundation of China (Grant No. 51872007), and Beijing Municipal Natural Science Foundation, China (Grant No. 7202094). |
Corresponding Authors:
Qing Zhao
E-mail: zhaoqing@pku.edu.cn
|
Cite this article:
Qinxuan Dai(戴沁煊), Chao Luo(骆超), Xianjin Wang(王显进), Feng Gao(高峰), Xiaole Jiang(姜晓乐), and Qing Zhao(赵清) Surface modulation of halide perovskite films for efficient and stable solar cells 2022 Chin. Phys. B 31 037303
|
[1] Bu T, Liu X, Zhou Y, Yi J, Huang X, Luo L, Xiao J, Ku Z, Peng Y, Huang F, Cheng Y B and Zhong J 2017 Energy & Environmental Science 10 2509 [2] Lin Q, Armin A, Burn P L and Meredith P 2016 Acc Chem. Res. 49 545 [3] Jena A K, Kulkarni A and Miyasaka T 2019 Chem. Rev. 119 3036 [4] Yang X, Fu Y, Su R, Zheng Y, Zhang Y, Yang W, Yu M, Chen P, Wang Y, Wu J, Luo D, Tu Y, Zhao L, Gong Q and Zhu R 2020 Adv. Mater. 32 e2002585 [5] Lim J, Hörantner M T, Sakai N, Ball J M, Mahesh S, Noel N K, Lin Y H, Patel J B, McMeekin D P, Johnston M B, Wenger B and Snaith H J 2019 Energy & Environmental Science 12 169 [6] Quarti C, Mosconi E, Ball J M, D'Innocenzo V, Tao C, Pathak S, Snaith H J, Petrozza A and De Angelis F 2016 Energy & Environmental Science 9 155 [7] Shi D, Adinolfi V, Comin R, Yuan M, Alarousu E, Buin A, Chen Y, Hoogland S, Rothenberger A, Katsiev K, Losovyj Y, Zhang X, Dowben P A, Mohammed O F, Sargent E H and Bakr O M 2015 Science 347 519 [8] Luo C, Yan C, Li W, Chun F J, Xie M L, Zhu Z H, Gao Y, Guo B L and Yang W Q 2020 Advanced Functional Materials 30 2000026 [9] Yang J, Zhang P, Wang J and Wei S 2020 Chin. Phys. B 29 108401 [10] Green M A, Ho-Baillie A and Snaith H J 2014 Nat. Photon. 8 506 [11] Rong Y, Hu Y, Mei A, Tan H, Saidaminov M I, Seok S I, McGehee M D, Sargent E H and Han H 2018 Science 361 eaat8235 [12] Kojima A, Teshima K, Shirai Y and Miyasaka T 2009 J. Am. Chem. Soc. 131 6050 [13] Wu Y, Islam A, Yang X, Qin C, Liu J, Zhang K, Peng W and Han L 2014 Energy Environ. Sci. 7 2934 [14] Xiao Z, Dong Q, Bi C, Shao Y, Yuan Y and Huang J 2014 Adv. Mater. 26 6503 [15] Rong Y, Tang Z, Zhao Y, Zhong X, Venkatesan S, Graham H, Patton M, Jing Y, Guloy A M and Yao Y 2015 Nanoscale 7 10595 [16] Burschka J, Pellet N, Moon S J, Humphry-Baker R, Gao P, Nazeeruddin M K and Gratzel M 2013 Nature 499 316 [17] Zhou Z, Wang Z, Zhou Y, Pang S, Wang D, Xu H, Liu Z, Padture N P and Cui G 2015 Angew. Chem. Int. Ed. Engl. 54 9705 [18] Liang Z, Yang B, Mei A, Lin S, Han H, Yuan Y, Xie H, Gao Y and Zhou C 2020 Chin. Phys. B 29 078401 [19] NREL 2020 https://www.nrel.gov/pv/assets/pdfs/best-research-cell-efficiencies.20200104.pdf [20] Yoo J J, Seo G, Chua M R, Park T G, Lu Y, Rotermund F, Kim Y K, Moon C S, Jeon N J, Correa-Baena J P, Bulović V, Shin S S, Bawendi M G and Seo J 2021 Nature 590 587 [21] Jeong J, Kim M, Seo J, et al. 2021 Nature 592 381 [22] Etgar L, Gao P, Xue Z, Peng Q, Chandiran A K, Liu B, Nazeeruddin M K and Gratzel M 2012 J. Am. Chem. Soc. 134 17396 [23] Kim H S, Lee C R, Im J H, Lee K B, Moehl T, Marchioro A, Moon S J, Humphry-Baker R, Yum J H, Moser J E, Gratzel M and Park N G 2012 Sci. Rep. 2 591 [24] Grancini G, Roldán-Carmona C, Zimmermann I, Mosconi E, Lee X, Martineau D, Narbey S, Oswald F, De Angelis F, Graetzel M and Nazeeruddin M K 2017 Nat. Commun. 8 15684 [25] Turren-Cruz S H, Hagfeldt A and Saliba M 2018 Science 362 449 [26] Bai S, Da P, Li C, Wang Z, Yuan Z, Fu F, Kawecki M, Liu X, Sakai N, Wang J T W, Huettner S, Buecheler S, Fahlman M, Gao F and Snaith H J 2019 Nature 571 245 [27] Wang Y, Wu T, Barbaud J, Kong W, Cui D, Chen H, Yang X and Han L 2019 Science 365 687 [28] Lin Y H, Sakai N, Da P, et al. 2020 Science 369 96 [29] Mei A, Sheng Y, Ming Y, Hu Y, Rong Y, Zhang W, Luo S, Na G, Tian C, Hou X, Xiong Y, Zhang Z, Liu S, Uchida S, Kim T W, Yuan Y, Zhang L, Zhou Y and Han H 2020 Joule 4 1 [30] Aberle A G 2000 Progress in Photovoltaics:Research and Applications 8 473 [31] Hong C Y, Huang G F, Yao W W, Deng J J and Liu X L 2019 Chin. Phys. B 28 128502 [32] Liu X C, Ma J J, Xie H Y, Ma P, Chen L, Guo M and Zhang W R 2020 Chin. Phys. B 29 028501 [33] Ogomi Y, Morita A, Tsukamoto S, Saitho T, Shen Q, Toyoda T, Yoshino K, Pandey S S, Ma T and Hayase S 2014 J. Phys. Chem. C 118 16651 [34] Zhou H, Chen Q, Li G, Luo S, Song T B, Duan H S, Hong Z, You J, Liu Y and Yang Y 2014 Science 345 542 [35] Tan H, Jain A, Voznyy O, Lan X, García de Arquer F P, Fan J Z, Quintero-Bermudez R, Yuan M, Zhang B, Zhao Y, Fan F, Li P, Quan L N, Zhao Y, Lu Z H, Yang Z, Hoogland S and Sargent E H 2017 Science 355 722 [36] Wang Y, Cui D, Zhang C, Han L and Yang X 2019 Acta Phys. Sin. 68 158401 (in Chinese) [37] Long C, Wang N, Huang K, Li H, Liu B and Yang J 2020 Chin. Phys. B 29 048801 [38] Wojciechowski K, Stranks S D, Abate A, Sadoughi G, Sadhanala A, Kopidakis N, Rumbles G, Li C Z, Friend R H, Jen A K Y and Snaith H J 2014 ACS Nano 8 12701 [39] Hou Y, Du X, Scheiner S, et al. 2017 Science 358 1192 [40] Arora N, Dar M I, Hinderhofer A, Pellet N, Schreiber F, Zakeeruddin S M and Grätzel M 2017 Science 358 768 [41] Xue J, Wang R and Yang Y 2020 Nat. Rev. Mater. 5 809 [42] Cao Y, Bai J and Feng H 2020 Chin. Phys. Lett. 37 107301 [43] Yang X, Luo D, Xiang Y, et al. 2021 Adv. Mater. 33 2006435 [44] Jiang Q, Zhao Y, Zhang X, Yang X, Chen Y, Chu Z, Ye Q, Li X, Yin Z and You J 2019 Nat. Photon. 13 460 [45] Luo D, Yang W, Wang Z, et al. 2018 Science 360 1442 [46] Wang Y, Dar M I, Ono L K, Zhang T, Kan M, Li Y, Zhang L, Wang X, Yang Y, Gao X, Qi Y, Grätzel M and Zhao Y 2019 Science 365 591 [47] Jung E H, Jeon N J, Park E Y, Moon C S, Shin T J, Yang T Y, Noh J H and Seo J 2019 Nature 567 511 [48] Li B, Zhang Y, Zhang L and Yin L 2017 Adv. Mater. 29 1701221 [49] Yuan J, Bi C, Xi J, Guo R and Tian J 2021 J. Phys. Chem. Lett. 12 1018 [50] Cheng F, He R, Nie S, Zhang C, Yin J, Li J, Zheng N and Wu B 2021 J. Am. Chem. Soc. 143 5855 [51] Zhang Y N, Li B, Fu L, Zou Y, Li Q and Yin L W 2019 Sol. Energy Mater Sol. Cells 194 168 [52] Liu J, Zhou Q, Thein N K, Tian L, Jia D, Johansson E M J and Zhang X 2019 Journal of Materials Chemistry A 7 13777 [53] Ruan W, Zhang Z, Hu Y, Bai F, Qiu T and Zhang S 2019 Appl. Surf. Sci. 465 420 [54] Sun H, Deng K, Xiong J and Li L 2020 Advanced Energy Materials 10 1903347 [55] Lu Y N, Zhong J X, Yu Y, Chen X, Yao C Y, Zhang C, Yang M, Feng W, Jiang Y, Tan Y, Gong L, Wei X, Zhou Y, Wang L and Wu W Q 2021 Energy & Environmental Science 14 4048 [56] Hu J, Wang C, Qiu S, Zhao Y, Gu E, Zeng L, Yang Y, Li C, Liu X, Forberich K, Brabec C J, Nazeeruddin M K, Mai Y and Guo F 2020 Advanced Energy Materials 10 2000173 [57] Mahmud M A, Duong T, Yin Y, Pham H T, Walter D, Peng J, Wu Y, Li L, Shen H, Wu N, Mozaffari N, Andersson G, Catchpole K R, Weber K J and White T P 2019 Adv. Funct. Mater. 30 1907962 [58] Hu Y, Schlipf J, Wussler M, Petrus M L, Jaegermann W, Bein T, Muller-Buschbaum P and Docampo P 2016 ACS Nano 10 5999 [59] Liu Y, Akin S, Pan L, Uchida R and Grtzel M 2019 Science Advances 5 eaaw2543 [60] Chen X, Xia Y, Huang Q, Li Z, Mei A, Hu Y, Wang T, Cheacharoen R, Rong Y and Han H 2021 Advanced Energy Materials 11 2100292 [61] Huang Z, Hu X, Liu C, Meng X, Huang Z, Yang J, Duan X, Long J, Zhao Z, Tan L, Song Y and Chen Y 2019 Adv. Funct. Mater. 29 1902629 [62] Yoo J J, Wieghold S, Sponseller M C, Chua M R, Bertram S N, Hartono N T P, Tresback J S, Hansen E C, Correa-Baena J P, Bulović V, Buonassisi T, Shin S S and Bawendi M G 2019 Energy & Environmental Science 12 2192 [63] Jang Y W, Lee S, Yeom K M, Jeong K, Choi K, Choi M and Noh J H 2021 Nature Energy 6 63 [64] Zheng X, Chen B, Dai J, Fang Y, Bai Y, Lin Y, Wei H, Zeng Xiao C and Huang J 2017 Nature Energy 2 17102 [65] Nan L, Zhu Z, Dong Q, Li J and Wang L 2017 Advanced Materials Interfaces 4 1700598 [66] Yoo H S and Park N G 2018 Sol. Energy Mater Sol. Cells 179 57 [67] Zhuang J, Mao P, Luan Y, Yi X, Tu Z, Zhang Y, Yi Y, Wei Y, Chen N, Lin T, Wang F, Li C and Wang J 2019 ACS Energy Letters 4 2913 [68] Yang B, Suo J, Mosconi E, Ricciarelli D, Tress W, Agelis F D, Kim H S and Hagfeldt A 2020 ACS Energy Letters 5 3159 [69] Hawash Z, Raga S R, Son D Y, Ono L K, Park N G and Qi Y 2017 J. Phys. Chem. Lett. 8 3947 [70] Zhu H, Liu Y, Eickemeyer F T, Pan L, Ren D, Ruiz-Preciado M A, Carlsen B, Yang B, Dong X, Wang Z, Liu H, Wang S, Zakeeruddin S M, Hagfeldt A, Dar M I, Li X and Gratzel M 2020 Adv. Mater. 32 e1907757 [71] Zhu H, Ren Y, Pan L, Ouellette O, Eickemeyer F T, Wu Y, Li X, Wang S, Liu H, Dong X, Zakeeruddin S M, Liu Y, Hagfeldt A and Gratzel M 2021 J. Am. Chem. Soc. 143 3231 [72] Yang S, Wang Y, Liu P, Cheng Y B, Zhao H J and Yang H G 2016 Nature Energy 1 15016 [73] Cao F, Wang M and Li L 2020 Nano Select 1 152 [74] Mei A, Li X, Liu L, Ku Z, Liu T, Rong Y, Xu M, Hu M, Chen J, Yang Y, Grätzel M and Han H 2014 Science 345 295 [75] Herz L M 2017 ACS Energy Letters 2 1539 [76] Jiang S, Sheng Y, Hu Y, Rong Y, Mei A and Han H 2020 Frontiers of Optoelectronics 13 256 [77] Noh J H, Im S H, Heo J H, Mandal T N and Seok S I 2013 Nano Lett. 13 1764 [78] Chung I, Song J H, Im J, Androulakis J, Malliakas C D, Li H, Freeman A J, Kenney J T and Kanatzidis M G 2012 J. Am. Chem. Soc. 134 8579 [79] Wang Q, Shao Y, Xie H, Lyu L, Liu X, Gao Y and Huang J 2014 Appl. Phys. Lett. 105 163508 [80] Paul G, Chatterjee S, Bhunia H and Pal A J 2018 J. Phys. Chem. C 122 20194 [81] Huang L, Bu S, Zhang D, Peng R, Wei Q, Ge Z and Zhang J 2019 Solar RRL 3 1800274 [82] Noel N K, Habisreutinger S N, Pellaroque A, Pulvirenti F, Wenger B, Zhang F, Lin Y H, Reid O G, Leisen J, Zhang Y, Barlow S, Marder S R, Kahn A, Snaith H J, Arnold C B and Rand B P 2019 Energy & Environmental Science 12 3063 [83] Saparov B and Mitzi D B 2016 Chem. Rev. 116 4558 [84] Misra R K, Cohen B E, Iagher L and Etgar L 2017 ChemSusChem 10 3712 [85] Tsai H, Nie W, Blancon J C, Stoumpos C C, Asadpour R, Harutyunyan B, Neukirch A J, Verduzco R, Crochet J J, Tretiak S, Pedesseau L, Even J, Alam M A, Gupta G, Lou J, Ajayan P M, Bedzyk M J and Kanatzidis M G 2016 Nature 536 312 [86] Ren H, Yu S, Chao L, Xia Y, Sun Y, Zuo S, Li F, Niu T, Yang Y, Ju H, Li B, Du H, Gao X, Zhang J, Wang J, Zhang L, Chen Y and Huang W 2020 Nat. Photon. 14 154 [87] Wang N, Cheng L, Ge R, et al. 2016 Nat. Photon. 10 699 [88] Wang Y, Ma Z Z, Li Y, Zhang F, Chen X and Shi Z F 2021 Chin. Phys. B 30 067802 [89] Lei J, Tang Q, He J and Cai M 2021 Chin. Phys. B 30 038102 [90] Quintero-Bermudez R, Proppe A H, Mahata A, Todorovic P, Kelley S O, De Angelis F and Sargent E H 2019 J. Am. Chem. Soc. 141 13459 [91] Yuan H B, Zhang J, Yu L T, Guo T H, Zhang Z Q, Wang Y Y, Shang M H, Liu X H, Hu Z Y, Zhu Y J and Han L Y 2021 Small Methods 5 2001090 [92] Proppe A H, Johnston A, Teale S, Mahata A, Quintero-Bermudez R, Jung E H, Grater L, Cui T, Filleter T, Kim C Y, Kelley S O, De Angelis F and Sargent E H 2021 Nat. Commun. 12 3472 [93] Zhang F, Kim D H, Lu H, Park J S, Larson B W, Hu J, Gao L, Xiao C, Reid O G, Chen X, Zhao Q, Ndione P F, Berry J J, You W, Walsh A, Beard M C and Zhu K 2019 J. Am. Chem. Soc. 141 5972 [94] Cho K T, Zhang Y, Orlandi S, Cavazzini M, Zimmermann I, Lesch A, Tabet N, Pozzi G, Grancini G and Nazeeruddin M K 2018 Nano Lett. 18 5467 [95] Sutanto A A, Caprioglio P, Drigo N, Hofstetter Y J, Garcia-Benito I, Queloz V I E, Neher D, Nazeeruddin M K, Stolterfoht M, Vaynzof Y and Grancini G 2021 Chem 7 1903 [96] Tan S, Huang T, Yavuz I, Wang R, Weber M H, Zhao Y, Abdelsamie M, Liao M E, Wang H C, Huynh K, Wei K H, Xue J, Babbe F, Goorsky M S, Lee J W, Sutter-Fella C M and Yang Y 2021 J. Am. Chem. Soc. 143 6781 [97] Wang F, Geng W, Zhou Y, Fang H H, Tong C J, Loi M A, Liu L M and Zhao N 2016 Adv. Mater. 28 9986 [98] Li C, Li H, Zhu Z, Cui N, Tan Z A and Yang R 2021 Solar RRL 5 2000519 [99] Li N, Zhu Z, Chueh C C, Liu H, Peng B, Petrone A, Li X, Wang L and Jen A K Y 2017 Advanced Energy Materials 7 1601307 [100] Yang S, Dai J, Yu Z, Shao Y, Zhou Y, Xiao X, Zeng X C and Huang J 2019 J. Am. Chem. Soc. 141 5781 [101] Lu H, Liu Y, Ahlawat P, et al. 2020 Science 370 abb8985 [102] Song Y, Li L, Bi W, Hao M, Kang Y, Wang A, Wang Z, Li H, Li X, Fang Y, Yang D and Dong Q 2020 Research 2020 5958243 [103] Oliver R, Lin Y H, Horn A J, Xia C Q and Snaith H J 2020 ACS Energy Letters 5 3336 [104] Li J, Bu T, Lin Z, Mo Y and Huang F 2020 Chem. Eng. J 405 126712 [105] Yang S, Chen S, Mosconi E, Fang Y, Xiao X, Wang C, Zhou Y, Yu Z, Zhao J and Gao Y 2019 Science 365 473 |
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|