INTERDISCIPLINARY PHYSICS AND RELATED AREAS OF SCIENCE AND TECHNOLOGY |
Prev
Next
|
|
|
Effect of net carriers at the interconnection layer in tandem organic solar cells |
Li-Jia Chen(陈丽佳)1,†, Guo-Xi Niu(牛国玺)2,†, Lian-Bin Niu(牛连斌)1, and Qun-Liang Song(宋群梁)2,‡ |
1 College of Physics and Electronic Engineering, Chongqing Normal University, Chongqing 401331, China; 2 Institute for Clean Energy&Advanced Materials, School of Materials and Energy, Southwest University, Chongqing 400715, China |
|
|
Abstract Tandem cell with structure of indium tin oxide (ITO)/molybdenum oxide (MoO3)/fullerene (C60)/copper phthalocyanine (CuPc)/C60/tris-8-hydroxy-quinolinato aluminum (Alq3)/Al was fabricated to study the effect of net carriers at the interconnection layer. The open circuit voltage and short circuit current were found to be 1.15 V and 0.56 mA/cm2, respectively. Almost the same performance (1.05 V, 0.58 mA/cm2
|
Received: 28 September 2021
Revised: 30 November 2021
Accepted manuscript online: 18 December 2021
|
PACS:
|
88.40.jr
|
(Organic photovoltaics)
|
|
72.20.Jv
|
(Charge carriers: generation, recombination, lifetime, and trapping)
|
|
73.40.-c
|
(Electronic transport in interface structures)
|
|
85.30.De
|
(Semiconductor-device characterization, design, and modeling)
|
|
Fund: This work was supported by the National Natural Science Foundation of China (Grant Nos. 11774293, 1207432, and 61874016). |
Corresponding Authors:
Li-Jia Chen, Qun-Liang Song
E-mail: qlsong@swu.edu.com
|
Cite this article:
Li-Jia Chen(陈丽佳), Guo-Xi Niu(牛国玺), Lian-Bin Niu(牛连斌), and Qun-Liang Song(宋群梁) Effect of net carriers at the interconnection layer in tandem organic solar cells 2022 Chin. Phys. B 31 038802
|
[1] Sampaio P G V, González M O A, Oliveira F P, Cunha J V P, Pereira, J P P, Ferreira H R and Oprime P C 2020 Int. J. Energy Res. 44 9912 [2] Xue J R, Uchida B P and Forrest S R 2005 Adv. Mater. 17 66 [3] Ali B A, Moubah R, Boulezhar A and Lassri H 2020 Chin. Phys. B 29 098801 [4] Park J W, Takaloo A V, Kim S H, Son K R, Kang D Y, Kang S K, Lee C B, Choi H, Shim J W and Kim T G 2021 J. Power Sources 489 229507 [5] Zhang L, Liu W N, Wang Y Z, Liu Q M, Li J S, Li Y L and He D Y 2021 Chin. Phys. B 30 104207 [6] Li F, Duan W, Pomaska M, Köhler M, Ding K, Pu Y, Aeberhard U and Rau U 2021 Chin. Phys. Lett. 38 036301 [7] Qu Z, Ma F, Zhao Y, Chu X, Yu S and You J 2021 Chin. Phys. Lett. 38 107801 [8] Munshi J, Chien T, Chen W and Balasubramanian G 2020 Soft Matter 16 6743 [9] Cheng P and Yang Y 2020 Acc. Chem. Res. 53 1218 [10] Khlaifia D, Massuyeau F, Ewels C P, Duvail J L, Faulques E and Alimi K 2017 Chemisty Select 2 10082 [11] Lassiter B E, Zimmerman, J D, Panda A, Xiao X and Forrest S R 2012 App. Phys. Lett. 101 063303 [12] Dennler G, Prall H J, Koeppe R, Egginge M, Autengruber R and Sariciftci N S 2006 App. Phys. Lett. 89 073502 [13] Peumans P, Yakimov A and Forrest S R 2003 J. App. Phys. 93 3693 [14] Macko J A, Lunt R R, Osedach T P, Brown P R, Barr M C, Gleason K K and Bulovic V 2012 Phys. Chem. Chem. Phys. 14 14548 [15] Ameri T, Dennler G, Lungenschmied C and Brabec C J 2009 Energy Environ. Sci. 2 347 [16] Yu B, Zhu F, Wang H B, Li G and Yan D H 2008 J. Appl. Phy. 104 114503 [17] Timmreck R, Olthof S, Leo, K and Riede M K 2010 J. Appl. Phys. 108 033108 [18] Seo J H, Kim D H, Kwon S H, Song M, Choi M S, Ryu S Y, Lee H W, Park Y C, Kwon J D, Nam K S, Jeong Y, Kang J W and Kim C S 2012 Adv. Mater. 24 4523 [19] Gilot J, Wienk M M and Janssen R A J 2010 Adv. Mater. 22 E67 [20] Steirer K X, MacDonald G A, Olthof S, Gantz J, Ratcliff E L, Kahn A and Armstrong N R 2013 J. Phys. Chem. C 117 22331 [21] Yakimov A and Forrest S R 2020 Appl. Phys. Lett. 80 1667 [22] Ishiyama N, Kubo M, Kaji T and Hiramoto M 2012 Appl. Phys. Lett. 101 233303 [23] Ishiyama N, Kubo M, Kaji T and Hiramoto M 2013 Org. Electron. 14 1793 [24] Song Q L, Yang H B, Gan Y, Gong C and Li C M 2010 J. Am. Chem. Soc. 132 4554 [25] Chen L, Zhang Q, Lei Y, Zhu F, Wu B, Zhang T, Niu G, Xiong Z and Song Q 2013 Phys. Chem. Chem. Phys. 15 16891 [26] Song Q L, Li F Y, Yang H, Wu H R, Wang X Z, Zhou W, Zhao J M, Ding X M, Huang C H and Hou X Y 2005 Chem. Phys. Lett. 416 42 [27] Zhang M L, Irfan, Ding H J, Gao Y L and Tang C W 2010 Appl. Phys. Lett. 96 183301 [28] Hoppe H, Sariciftci N S and Meissner D 2002 Mol. Cryst. Liq. Cryst. 385 113 [29] Abdellaou A, Donnadieu G L A, Bath A and Bouchikhi B 1997 Thin Solid Films 304 39 [30] Elmas D N and Çapan I 2019 Indian J. Phys. 94 1061 [31] Pettersson, L A A, Roman L S and Inganäs O 1999 J. Appl. Phys. 86 487 [32] Xie W, Zhao Y, Hou J and Liu S 2003 Jpn. J. App. Phys. 42 1466 [33] Song Q L, Yang H, Wu H R and Li F Y 2006 J. Lumin. 119 142 [34] Zhao X, Li Z, Zhu T, Mi B, Gao Z and Huang W 2013 J. Phys. D App. Phys. 46 195105 |
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|