CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES |
Prev
Next
|
|
|
Two-dimensional metallic behavior at polar MgO/BaTiO3 (110) interfaces |
Du Yan-Ling (杜颜伶)a b, Wang Chun-Lei (王春雷)a, Li Ji-Chao (李吉超)a, Zhang Xin-Hua (张新华)a, Wang Fu-Ning (王芙凝)a, Liu Jian (刘剑)a, Zhu Yuan-Hu (祝元虎)a, Yin Na (尹娜)a, Mei Liang-Mo (梅良模)a |
a School of Physics, Shandong University, Jinan 250100, China; b College of Science and Technology, Shandong University of Traditional Chinese Medicine, Jinan 250355, China |
|
|
Abstract The first-principles calculations are employed to investigate the electrical properties of polar MgO/BaTiO3 (110) interfaces. Both n-type and p-type polar interfaces show a two-dimensional metallic behavior. For the n-type polar interface, the interface Ti 3d electrons are the origin of the metallic and magnetic properties. Varying the thickness of BaTiO3 may induce an insulator-metal transition, and the critical thickness is 4 unit cells. For the p-type polar interface, holes preferentially occupy the interface O 2py state, resulting in a conducting interface. The unbalance of the spin splitting of the O 2p states in the interface MgO layer leads to a magnetic moment of about 0.25μB per O atom at the interface. These results further demonstrate that other polar interfaces, besides LaAlO3/SrTiO3, can show a two-dimensional metallic behavior. It is helpful to fully understand the role of polar discontinuity on the properties of the interface, which widens the field of polar-nonpolar interfaces.
|
Received: 22 August 2014
Revised: 05 October 2014
Accepted manuscript online:
|
PACS:
|
73.20.At
|
(Surface states, band structure, electron density of states)
|
|
75.70.Cn
|
(Magnetic properties of interfaces (multilayers, superlattices, heterostructures))
|
|
73.20.-r
|
(Electron states at surfaces and interfaces)
|
|
75.70.-i
|
(Magnetic properties of thin films, surfaces, and interfaces)
|
|
Fund: Project supported by the National Basic Research Program of China (Grant No. 2013CB632506), the National Natural Science Foundation of China (Grant Nos. 11374186, 51231007, 51202132, and 51102153), and the Independent Innovation Foundation of Shandong University, China (Grant No. 2012TS027). |
Corresponding Authors:
Li Ji-Chao
E-mail: lijichao@sdu.edu.cn
|
Cite this article:
Du Yan-Ling (杜颜伶), Wang Chun-Lei (王春雷), Li Ji-Chao (李吉超), Zhang Xin-Hua (张新华), Wang Fu-Ning (王芙凝), Liu Jian (刘剑), Zhu Yuan-Hu (祝元虎), Yin Na (尹娜), Mei Liang-Mo (梅良模) Two-dimensional metallic behavior at polar MgO/BaTiO3 (110) interfaces 2015 Chin. Phys. B 24 037301
|
[1] |
Ohtomo A and Hwang H Y 2004 Nature 427 423
|
[2] |
Kalabukhov A, Gunnarsson R, Börjesson J, Olsson E, Claeson T and Winkler D 2007 Phys. Rev. B 75 121404
|
[3] |
Siemons W, Koster G, Yamamoto H, Harrison W A, Lucovsky G, Geballe T H, Blank D H A and Beasley M R 2007 Phys. Rev. Lett. 98 196802
|
[4] |
Maurice J L, Herranz G, Colliex C, Devos I, Carrétéro C, Barthélémy A, Bouzehouane K, Fusil S, Imhoff D, Jacquet E, Jomard F, Ballutaud D and Basletic M 2008 Europhys. Lett. 82 17003
|
[5] |
Huijben M, Rijnders G, Blank D H A, Bals S, Aert S V, Verbeeck J, Tendeloo G V, Brinkman A and Hilgenkamp H 2006 Nat. Mater. 5 556
|
[6] |
Bell C, Harashima S, Hikita Y and Hwang H Y 2009 Appl. Phys. Lett. 94 222111
|
[7] |
Thiel S, Hammerl G, Schmehl A, Schneider C W and Mannhart J 2006 Science 313 942
|
[8] |
Caviglia A D, Gariglio S, Reyren N, Jaccard D, Schneider T, Gabay M, Thiel S, Hammerl G, Mannhart J and Triscone J M 2008 Nature 456 624
|
[9] |
Yang X P and Su H B 2011 ACS Appl. Mater. Interfaces 3 3819
|
[10] |
Bark C W, Felker D A, Wang Y, Zhang Y, Jang H W, Folkman C M, Park J W, Baek S H, Zhou H, Fong D D, Pan X Q, Tsymbal E Y, Rzchowski M S and Eom C B 2011 Proceedings of the National Academy of Sciences 108 4720
|
[11] |
Pentcheva R and Pickett W E 2006 Phys. Rev. B 74 035112
|
[12] |
Park M S, Rhim S H and Freeman A J 2006 Phys. Rev. B 74 205416
|
[13] |
Verbeeck J, Bals S, Kravtsova A N, Lamoen D, Luysberg M, Huijben M, Rijnders G, Brinkman A, Hilgenkamp H, Blank D H A and Tendeloo G V 2010 Phys. Rev. B 81 085113
|
[14] |
Wang H Y, Duan Z G, Liao W H and Zhou G H 2010 Chin. Phys. B 19 037301
|
[15] |
Du Y L, Wang C L, Li J C, Xu P P, Zhang X H, Liu J, Su W B and Mei L M 2014 Chin. Phys. B 23 087302
|
[16] |
Nakagawa N, Hwang H Y and Muller D 2006 Nat. Mater. 5 204
|
[17] |
Hotta Y, Susaki T and Hwang H Y 2007 Phys. Rev. Lett. 99 236805
|
[18] |
Wang Y, Niranjan M K, Burton J D, An J M, Belashchenko K D and Tsymbal E Y 2009 Phys. Rev. B 79 212408
|
[19] |
Perna P, Maccariello D, Radovic M, Scotti di Uccio U, Pallecchi I, Codda M, Marré D, Cantoni C, Gazquez J, Varela M, Pennycook S J and Granozio F M 2010 Appl. Phys. Lett. 97 152111
|
[20] |
Aboelfotoh M O 1975 Journal of Vacuum Science and Technology 12 67
|
[21] |
Geguzina G A and Sakhnenko V P 2004 Crystallography Reports 49 15
|
[22] |
Murphy T E, Chen D and Phillips J D 2004 Appl. Phys. Lett. 85 3208
|
[23] |
Petraru A, Schubert J, Schmid M and Buchal Ch 2002 Appl. Phys. Lett. 81 1375
|
[24] |
Buchal Ch, Beckers L, Eckau A, Schubert J and Zander W 1998 Mater. Sci. Engng B 56 234
|
[25] |
Kim S, Hishita S, Kang Y M and Baik S 1995 J. Appl. Phys. 78 5604
|
[26] |
Shih W C, Chiang M H and Mater J 2010 Sci.: Mater Electron. 21 844
|
[27] |
Zhang W Kang L M, Yuan M L, Yang Q and Ouyang J 2013 J. Alloy. Compd. 580 363
|
[28] |
Towner D J, Ni J, Marks T J and Wessels B W 2003 J. Cryst. Growth 255 107
|
[29] |
Hiltunen J, Seneviratne D, Tuller H L, Lappalainen J and Lantto V 2009 J. Electroceram 22 395
|
[30] |
Wu Z, Cohen R E and Singh D J 2004 Phys. Rev. B 70 104112
|
[31] |
Bilc I, Orlando R, Shaltaf R, Rignanese G M, İñiguez Jorge and Ghosez Ph 2008 Phys. Rev. B 77 165107
|
[32] |
Wei X H, Zhu J and Li Y R 2011 Vacuum 85 999
|
[33] |
Kresse G and Furthmüller J 1996 Phys. Rev. B 54 11169
|
[34] |
Kresse G and Joubert D 1999 Phys. Rev. B 59 1758
|
[35] |
Blöchl P E 1994 Phys. Rev. B 50 17953
|
[36] |
Ceperley D M and Alder B J 1980 Phys. Rev. Lett. 45 566
|
[37] |
Monkhorst H J and Pack J D 1976 Phys. Rev. B 13 5188
|
[38] |
Sivadas N, Dixit H, Cooper V R and Xiao D 2014 Phys. Rev. B 89 075303
|
[39] |
Willmott P R, Pauli S A, Herger R, Schlepütz C M, Martoccia D, Patterson B D, Delley B, Clarke R, Kumah D, Cionca C and Yacoby Y 2007 Phys. Rev. Lett. 99 155502
|
[40] |
Lee J, Sai N and Demkov A A 2010 Phys. Rev. B 82 235305
|
[41] |
Pentcheva R and Pickett W E 2009 Phys. Rev. Lett. 102 107602
|
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|