Please wait a minute...
Chin. Phys. B, 2015, Vol. 24(3): 037301    DOI: 10.1088/1674-1056/24/3/037301
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES Prev   Next  

Two-dimensional metallic behavior at polar MgO/BaTiO3 (110) interfaces

Du Yan-Ling (杜颜伶)a b, Wang Chun-Lei (王春雷)a, Li Ji-Chao (李吉超)a, Zhang Xin-Hua (张新华)a, Wang Fu-Ning (王芙凝)a, Liu Jian (刘剑)a, Zhu Yuan-Hu (祝元虎)a, Yin Na (尹娜)a, Mei Liang-Mo (梅良模)a
a School of Physics, Shandong University, Jinan 250100, China;
b College of Science and Technology, Shandong University of Traditional Chinese Medicine, Jinan 250355, China
Abstract  The first-principles calculations are employed to investigate the electrical properties of polar MgO/BaTiO3 (110) interfaces. Both n-type and p-type polar interfaces show a two-dimensional metallic behavior. For the n-type polar interface, the interface Ti 3d electrons are the origin of the metallic and magnetic properties. Varying the thickness of BaTiO3 may induce an insulator-metal transition, and the critical thickness is 4 unit cells. For the p-type polar interface, holes preferentially occupy the interface O 2py state, resulting in a conducting interface. The unbalance of the spin splitting of the O 2p states in the interface MgO layer leads to a magnetic moment of about 0.25μB per O atom at the interface. These results further demonstrate that other polar interfaces, besides LaAlO3/SrTiO3, can show a two-dimensional metallic behavior. It is helpful to fully understand the role of polar discontinuity on the properties of the interface, which widens the field of polar-nonpolar interfaces.
Keywords:  electronic structures      MgO/BaTiO3 (110) polar interfaces      two-dimensional electron gas (2DEG)      magnetism  
Received:  22 August 2014      Revised:  05 October 2014      Accepted manuscript online: 
PACS:  73.20.At (Surface states, band structure, electron density of states)  
  75.70.Cn (Magnetic properties of interfaces (multilayers, superlattices, heterostructures))  
  73.20.-r (Electron states at surfaces and interfaces)  
  75.70.-i (Magnetic properties of thin films, surfaces, and interfaces)  
Fund: Project supported by the National Basic Research Program of China (Grant No. 2013CB632506), the National Natural Science Foundation of China (Grant Nos. 11374186, 51231007, 51202132, and 51102153), and the Independent Innovation Foundation of Shandong University, China (Grant No. 2012TS027).
Corresponding Authors:  Li Ji-Chao     E-mail:  lijichao@sdu.edu.cn

Cite this article: 

Du Yan-Ling (杜颜伶), Wang Chun-Lei (王春雷), Li Ji-Chao (李吉超), Zhang Xin-Hua (张新华), Wang Fu-Ning (王芙凝), Liu Jian (刘剑), Zhu Yuan-Hu (祝元虎), Yin Na (尹娜), Mei Liang-Mo (梅良模) Two-dimensional metallic behavior at polar MgO/BaTiO3 (110) interfaces 2015 Chin. Phys. B 24 037301

[1] Ohtomo A and Hwang H Y 2004 Nature 427 423
[2] Kalabukhov A, Gunnarsson R, Börjesson J, Olsson E, Claeson T and Winkler D 2007 Phys. Rev. B 75 121404
[3] Siemons W, Koster G, Yamamoto H, Harrison W A, Lucovsky G, Geballe T H, Blank D H A and Beasley M R 2007 Phys. Rev. Lett. 98 196802
[4] Maurice J L, Herranz G, Colliex C, Devos I, Carrétéro C, Barthélémy A, Bouzehouane K, Fusil S, Imhoff D, Jacquet E, Jomard F, Ballutaud D and Basletic M 2008 Europhys. Lett. 82 17003
[5] Huijben M, Rijnders G, Blank D H A, Bals S, Aert S V, Verbeeck J, Tendeloo G V, Brinkman A and Hilgenkamp H 2006 Nat. Mater. 5 556
[6] Bell C, Harashima S, Hikita Y and Hwang H Y 2009 Appl. Phys. Lett. 94 222111
[7] Thiel S, Hammerl G, Schmehl A, Schneider C W and Mannhart J 2006 Science 313 942
[8] Caviglia A D, Gariglio S, Reyren N, Jaccard D, Schneider T, Gabay M, Thiel S, Hammerl G, Mannhart J and Triscone J M 2008 Nature 456 624
[9] Yang X P and Su H B 2011 ACS Appl. Mater. Interfaces 3 3819
[10] Bark C W, Felker D A, Wang Y, Zhang Y, Jang H W, Folkman C M, Park J W, Baek S H, Zhou H, Fong D D, Pan X Q, Tsymbal E Y, Rzchowski M S and Eom C B 2011 Proceedings of the National Academy of Sciences 108 4720
[11] Pentcheva R and Pickett W E 2006 Phys. Rev. B 74 035112
[12] Park M S, Rhim S H and Freeman A J 2006 Phys. Rev. B 74 205416
[13] Verbeeck J, Bals S, Kravtsova A N, Lamoen D, Luysberg M, Huijben M, Rijnders G, Brinkman A, Hilgenkamp H, Blank D H A and Tendeloo G V 2010 Phys. Rev. B 81 085113
[14] Wang H Y, Duan Z G, Liao W H and Zhou G H 2010 Chin. Phys. B 19 037301
[15] Du Y L, Wang C L, Li J C, Xu P P, Zhang X H, Liu J, Su W B and Mei L M 2014 Chin. Phys. B 23 087302
[16] Nakagawa N, Hwang H Y and Muller D 2006 Nat. Mater. 5 204
[17] Hotta Y, Susaki T and Hwang H Y 2007 Phys. Rev. Lett. 99 236805
[18] Wang Y, Niranjan M K, Burton J D, An J M, Belashchenko K D and Tsymbal E Y 2009 Phys. Rev. B 79 212408
[19] Perna P, Maccariello D, Radovic M, Scotti di Uccio U, Pallecchi I, Codda M, Marré D, Cantoni C, Gazquez J, Varela M, Pennycook S J and Granozio F M 2010 Appl. Phys. Lett. 97 152111
[20] Aboelfotoh M O 1975 Journal of Vacuum Science and Technology 12 67
[21] Geguzina G A and Sakhnenko V P 2004 Crystallography Reports 49 15
[22] Murphy T E, Chen D and Phillips J D 2004 Appl. Phys. Lett. 85 3208
[23] Petraru A, Schubert J, Schmid M and Buchal Ch 2002 Appl. Phys. Lett. 81 1375
[24] Buchal Ch, Beckers L, Eckau A, Schubert J and Zander W 1998 Mater. Sci. Engng B 56 234
[25] Kim S, Hishita S, Kang Y M and Baik S 1995 J. Appl. Phys. 78 5604
[26] Shih W C, Chiang M H and Mater J 2010 Sci.: Mater Electron. 21 844
[27] Zhang W Kang L M, Yuan M L, Yang Q and Ouyang J 2013 J. Alloy. Compd. 580 363
[28] Towner D J, Ni J, Marks T J and Wessels B W 2003 J. Cryst. Growth 255 107
[29] Hiltunen J, Seneviratne D, Tuller H L, Lappalainen J and Lantto V 2009 J. Electroceram 22 395
[30] Wu Z, Cohen R E and Singh D J 2004 Phys. Rev. B 70 104112
[31] Bilc I, Orlando R, Shaltaf R, Rignanese G M, İñiguez Jorge and Ghosez Ph 2008 Phys. Rev. B 77 165107
[32] Wei X H, Zhu J and Li Y R 2011 Vacuum 85 999
[33] Kresse G and Furthmüller J 1996 Phys. Rev. B 54 11169
[34] Kresse G and Joubert D 1999 Phys. Rev. B 59 1758
[35] Blöchl P E 1994 Phys. Rev. B 50 17953
[36] Ceperley D M and Alder B J 1980 Phys. Rev. Lett. 45 566
[37] Monkhorst H J and Pack J D 1976 Phys. Rev. B 13 5188
[38] Sivadas N, Dixit H, Cooper V R and Xiao D 2014 Phys. Rev. B 89 075303
[39] Willmott P R, Pauli S A, Herger R, Schlepütz C M, Martoccia D, Patterson B D, Delley B, Clarke R, Kumah D, Cionca C and Yacoby Y 2007 Phys. Rev. Lett. 99 155502
[40] Lee J, Sai N and Demkov A A 2010 Phys. Rev. B 82 235305
[41] Pentcheva R and Pickett W E 2009 Phys. Rev. Lett. 102 107602
[1] Prediction of one-dimensional CrN nanostructure as a promising ferromagnetic half-metal
Wenyu Xiang(相文雨), Yaping Wang(王亚萍), Weixiao Ji(纪维霄), Wenjie Hou(侯文杰),Shengshi Li(李胜世), and Peiji Wang(王培吉). Chin. Phys. B, 2023, 32(3): 037103.
[2] High-temperature ferromagnetism and strong π-conjugation feature in two-dimensional manganese tetranitride
Ming Yan(闫明), Zhi-Yuan Xie(谢志远), and Miao Gao(高淼). Chin. Phys. B, 2023, 32(3): 037104.
[3] Charge-mediated voltage modulation of magnetism in Hf0.5Zr0.5O2/Co multiferroic heterojunction
Jia Chen(陈佳), Peiyue Yu(于沛玥), Lei Zhao(赵磊), Yanru Li(李彦如), Meiyin Yang(杨美音), Jing Xu(许静), Jianfeng Gao(高建峰), Weibing Liu(刘卫兵), Junfeng Li(李俊峰), Wenwu Wang(王文武), Jin Kang(康劲), Weihai Bu(卜伟海), Kai Zheng(郑凯), Bingjun Yang(杨秉君), Lei Yue(岳磊), Chao Zuo(左超), Yan Cui(崔岩), and Jun Luo(罗军). Chin. Phys. B, 2023, 32(2): 027504.
[4] Magnetic properties of oxides and silicon single crystals
Zhong-Xue Huang(黄忠学), Rui Wang(王瑞), Xin Yang(杨鑫), Hao-Feng Chen(陈浩锋), and Li-Xin Cao(曹立新). Chin. Phys. B, 2022, 31(8): 087501.
[5] Magnetic van der Waals materials: Synthesis, structure, magnetism, and their potential applications
Zhongchong Lin(林中冲), Yuxuan Peng(彭宇轩), Baochun Wu(吴葆春), Changsheng Wang(王常生), Zhaochu Luo(罗昭初), and Jinbo Yang(杨金波). Chin. Phys. B, 2022, 31(8): 087506.
[6] High-pressure study of topological semimetals XCd2Sb2 (X = Eu and Yb)
Chuchu Zhu(朱楚楚), Hao Su(苏豪), Erjian Cheng(程二建), Lin Guo(郭琳), Binglin Pan(泮炳霖), Yeyu Huang(黄烨煜), Jiamin Ni(倪佳敏), Yanfeng Guo(郭艳峰), Xiaofan Yang(杨小帆), and Shiyan Li(李世燕). Chin. Phys. B, 2022, 31(7): 076201.
[7] Voltage control magnetism and ferromagnetic resonance in an Fe19Ni81/PMN-PT heterostructure by strain
Jun Ren(任军), Junming Li(李军明), Sheng Zhang(张胜), Jun Li(李骏), Wenxia Su(苏文霞), Dunhui Wang(王敦辉), Qingqi Cao(曹庆琪), and Youwei Du(都有为). Chin. Phys. B, 2022, 31(7): 077502.
[8] Bandgap evolution of Mg3N2 under pressure: Experimental and theoretical studies
Gang Wu(吴刚), Lu Wang(王璐), Kuo Bao(包括), Xianli Li(李贤丽), Sheng Wang(王升), and Chunhong Xu(徐春红). Chin. Phys. B, 2022, 31(6): 066205.
[9] Dynamical signatures of the one-dimensional deconfined quantum critical point
Ning Xi(西宁) and Rong Yu(俞榕). Chin. Phys. B, 2022, 31(5): 057501.
[10] High-throughput computational material screening of the cycloalkane-based two-dimensional Dion—Jacobson halide perovskites for optoelectronics
Guoqi Zhao(赵国琪), Jiahao Xie(颉家豪), Kun Zhou(周琨), Bangyu Xing(邢邦昱), Xinjiang Wang(王新江), Fuyu Tian(田伏钰), Xin He(贺欣), and Lijun Zhang(张立军). Chin. Phys. B, 2022, 31(3): 037104.
[11] Spin and spin-orbit coupling effects in nickel-based superalloys: A first-principles study on Ni3Al doped with Ta/W/Re
Liping Liu(刘立平), Jin Cao(曹晋), Wei Guo(郭伟), and Chongyu Wang(王崇愚). Chin. Phys. B, 2022, 31(1): 016105.
[12] Gate-controlled magnetic transitions in Fe3GeTe2 with lithium ion conducting glass substrate
Guangyi Chen(陈光毅), Yu Zhang(张玉), Shaomian Qi(齐少勉), and Jian-Hao Chen(陈剑豪). Chin. Phys. B, 2021, 30(9): 097504.
[13] Strain-tuned magnetic properties in (Ga,Fe)Sb: First-principles study
Feng-Chun Pan(潘凤春), Xue-Ling Lin(林雪玲), and Xu-Ming Wang(王旭明). Chin. Phys. B, 2021, 30(9): 096105.
[14] Origin of itinerant ferromagnetism in two-dimensional Fe3GeTe2
Xi Chen(陈熙), Zheng-Zhe Lin(林正喆), and Li-Rong Cheng(程丽蓉). Chin. Phys. B, 2021, 30(4): 047502.
[15] Spin correlations in the S=1 armchair chain Ni2NbBO6 as seen from NMR
Kai-Yue Zeng(曾凯悦), Long Ma(马龙), Long-Meng Xu(徐龙猛), Zhao-Ming Tian(田召明), Lang-Sheng Ling(凌浪生), and Li Pi(皮雳). Chin. Phys. B, 2021, 30(4): 047503.
No Suggested Reading articles found!