Please wait a minute...
Chin. Phys. B, 2015, Vol. 24(2): 027801    DOI: 10.1088/1674-1056/24/2/027801
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES Prev   Next  

Hole transporting material 5, 10, 15-tribenzyl-5H-diindolo[3, 2-a:3',2'-c]-carbazole for efficient optoelectronic applications as an active layer

Zheng Yan-Qiong (郑燕琼)a b, William J. Potscavage Jrb, Zhang Jian-Hua (张建华)a, Wei Bin (魏斌)a, Huang Rong-Juan (黄荣娟)a
a Key Laboratory of Advanced Display and System Applications, Ministry of Education, Shanghai University, Shanghai 200072, China;
b Center for Organic Photonics and Electronics Research (OPERA) and International Institute for Carbon Neutral Energy Research (WPI-I2CNER), Kyushu University, 744 Motooka, Nishi, Fukuoka 819-0395, Japan
Abstract  In order to explore the novel application of the transparent hole-transporting material 5,10,15-tribenzyl-5H-diindolo[3,2-a:3',2'-c]-carbazole (TBDI), in this article TBDI is used as an active layer but not a buffer layer in a photodetector (PD), organic light-emitting diode (OLED), and organic photovoltaic cell (OPV) for the first time. Firstly, the absorption and emission spectra of a blend layer comprised of TBDI and electron-transporting material bis-(2-methyl-8-quinolinate) 4-phenylphenolate (BAlq) are investigated. Based on the absorption properties, an organic PD with a peak absorption at 320 nm is fabricated, and a relatively-high detectivity of 2.44×1011 cm·Hz1/2/W under 320-nm illumination is obtained. The TBDI/tris (8-hydroxyquinoline) aluminum (Alq3) OLED device exhibits a comparable external quantum efficiency and current efficiency to a traditional 4, 4-bis[N-(1-naphthyl)-N-phenyl-amino]biphenyl (α-NPD)/Alq3 OLED. A C70-based Schottky junction with 5 wt%-TBDI yields a power conversion efficiency of 5.0%, which is much higher than 1.7% for an α -NPD-based junction in the same configuration. These results suggest that TBDI has some promising properties which are in favor of the hole-transporting in Schottky junctions with a low-concentration donor.
Keywords:  5,10,15-tribenzyl-5H-diindolo[3,2-a:3',2'-c]-carbazole      photodetector      organic light-emitting diode      Schottky junction  
Received:  09 July 2014      Revised:  01 August 2014      Accepted manuscript online: 
PACS:  78.20.-e (Optical properties of bulk materials and thin films)  
  68.35.-p (Solid surfaces and solid-solid interfaces: structure and energetics)  
  73.40.Lq (Other semiconductor-to-semiconductor contacts, p-n junctions, and heterojunctions)  
  42.79.Ek (Solar collectors and concentrators)  
Fund: Project supported by the Funding Program for World-Leading Innovative R & D on Science and Technology (FIRST) from JSPS, the Fund from the Science and Technology Commission of Shanghai Municipality, China (Grant Nos. 14DZ2280900 and 14XD1401800), and the Natural Science Foundation of Shanghai (Grant No. 15ZR1416600).
Corresponding Authors:  Zhang Jian-Hua     E-mail:  jhzhang@shu.edu.cn

Cite this article: 

Zheng Yan-Qiong (郑燕琼), William J. Potscavage Jr, Zhang Jian-Hua (张建华), Wei Bin (魏斌), Huang Rong-Juan (黄荣娟) Hole transporting material 5, 10, 15-tribenzyl-5H-diindolo[3, 2-a:3',2'-c]-carbazole for efficient optoelectronic applications as an active layer 2015 Chin. Phys. B 24 027801

[1] Xu Z X and Roy V A L 2013 Chin. Phys. B 22 128505
[2] Yang Q Q, Yang D B, Zhao S L, Huang Y, Xu Z, Gong W, Fan X, Liu Z F, Huang Q Y and Xu X R 2014 Chin. Phys. B 23 038405
[3] Wang N N, Yu J S, Zang Y and Jiang Y D 2010 Chin. Phys. B 19 038602
[4] Zhao L, Liu D Y, Liu D M, Chen P, Zhao Y and Liu S Y 2012 Acta Phys. Sin. 61 088802 (in Chinese)
[5] Kulshreshtha C, Kim G W, Lampande R, Huh D H, Chae M and Kwon J H 2013 J. Mater. Chem. A 1 4077
[6] Jeon W S, Parka T J, Kimb K H, Podec R, Jang J and Kwon J H 2010 Org. Electron. 11 179
[7] Okumoto K and Shirota Y 2001 Mater. Sci. Eng. B 85 135
[8] Higgins R W T, Monkman A P, Nothofer H G and Scherf U 2002 J. Appl. Phys. 91 99
[9] Su Z S, Li W L, Chu B, Li T, Zhu J, Zhang G, Yan F, Li X, Chen Y and Lee C S 2008 Appl. Phys. Lett. 93 103309
[10] Wu S H, Li W L, Chu B, Lee C S, Su Z S, Wang J B, Ren Q J, Hu Z Z and Zhang Z Q 2010 Appl. Phys. Lett. 97 023306
[11] Ray D and Narasimhan K L 2007 Appl. Phys. Lett. 91 093516
[12] Gong X, Tong M, Xia Y, Cai W, Moon J S, Cao Y, Yu G, Shieh C L, Nilsson B and Heeger A J 2009 Science 325 1665
[13] Binda M, Iacchetti A, Natali D, Beverina L, Sassi M and Sampietro M 2011 Appl. Phys. Lett. 98 073303
[14] Zhu L, Dai Q, Hu Z F, Zhang X Q and Wang Y S 2011 Opt. Lett. 36 1821
[15] New E, Howells T, Sullivan P and Jones T S 2013 Org. Electron. 14 2353
[16] Kwak K, Cho K and Kim S 2013 Opt. Express 21 29558
[17] Agrawal K L, Sykes M E, Hyup An K, Frieberg B, Green P F and Shtein M 2013 Appl. Phys. Lett. 102 113304
[18] Zhang M, Wang H, Tian H, Geng Y and Tang C W 2011 Adv. Mater. 23 4960
[19] Zheng Y Q, Potscavage W J Jr, Komino T, Hirade M, Adachi J and Adachi C 2013 Appl. Phys. Lett. 102 143304
[20] Tress W, Petrich A, Hummert M, Hein M, Leo K and Riede M 2011 Appl. Phys. Lett. 98 063301
[21] Chiba T, Nakayama K i, Pu Y J, Nishina T, Yokoyama M and Kido J 2011 Chem. Phys. Lett. 502 118
[22] Sutty S, Williams G and Aziz H 2013 Org. Electron. 14 2392
[1] High-performance extended short-wavelength infrared PBn photodetectors based on InAs/GaSb/AlSb superlattices
Junkai Jiang(蒋俊锴), Faran Chang(常发冉), Wenguang Zhou(周文广), Nong Li(李农), Weiqiang Chen(陈伟强), Dongwei Jiang(蒋洞微), Hongyue Hao(郝宏玥), Guowei Wang(王国伟), Donghai Wu(吴东海), Yingqiang Xu(徐应强), and Zhi-Chuan Niu(牛智川). Chin. Phys. B, 2023, 32(3): 038503.
[2] A self-driven photodetector based on a SnS2/WS2 van der Waals heterojunction with an Al2O3 capping layer
Hsiang-Chun Wang(王祥骏), Yuheng Lin(林钰恒), Xiao Liu(刘潇), Xuanhua Deng(邓煊华),Jianwei Ben(贲建伟), Wenjie Yu(俞文杰), Deliang Zhu(朱德亮), and Xinke Liu(刘新科). Chin. Phys. B, 2023, 32(1): 018504.
[3] Dramatic reduction in dark current of β-Ga2O3 ultraviolet photodectors via β-(Al0.25Ga0.75)2O3 surface passivation
Jian-Ying Yue(岳建英), Xue-Qiang Ji(季学强), Shan Li(李山), Xiao-Hui Qi(岐晓辉), Pei-Gang Li(李培刚), Zhen-Ping Wu(吴真平), and Wei-Hua Tang(唐为华). Chin. Phys. B, 2023, 32(1): 016701.
[4] A 4×4 metal-semiconductor-metal rectangular deep-ultraviolet detector array of Ga2O3 photoconductor with high photo response
Zeng Liu(刘增), Yu-Song Zhi(支钰崧), Mao-Lin Zhang(张茂林), Li-Li Yang(杨莉莉), Shan Li(李山), Zu-Yong Yan(晏祖勇), Shao-Hui Zhang(张少辉), Dao-You Guo(郭道友), Pei-Gang Li(李培刚), Yu-Feng Guo(郭宇锋), and Wei-Hua Tang(唐为华). Chin. Phys. B, 2022, 31(8): 088503.
[5] A self-powered and sensitive terahertz photodetection based on PdSe2
Jie Zhou(周洁), Xueyan Wang(王雪妍), Zhiqingzi Chen(陈支庆子), Libo Zhang(张力波), Chenyu Yao(姚晨禹), Weijie Du(杜伟杰), Jiazhen Zhang(张家振), Huaizhong Xing(邢怀中), Nanxin Fu(付南新), Gang Chen(陈刚), and Lin Wang(王林). Chin. Phys. B, 2022, 31(5): 050701.
[6] Improving the performance of a GaAs nanowire photodetector using surface plasmon polaritons
Xiaotian Zhu(朱笑天), Bingheng Meng(孟兵恒), Dengkui Wang(王登魁), Xue Chen(陈雪), Lei Liao(廖蕾), Mingming Jiang(姜明明), and Zhipeng Wei(魏志鹏). Chin. Phys. B, 2022, 31(4): 047801.
[7] Graphene-based heterojunction for enhanced photodetectors
Haiting Yao(姚海婷), Xin Guo(郭鑫), Aida Bao(鲍爱达), Haiyang Mao(毛海央),Youchun Ma(马游春), and Xuechao Li(李学超). Chin. Phys. B, 2022, 31(3): 038501.
[8] Facile sensitizing of PbSe film for near-infrared photodetector by microwave plasma processing
Kangyi Zhao(赵康伊), Shuanglong Feng(冯双龙), Chan Yang(杨婵),Jun Shen(申钧), and Yongqi Fu(付永启). Chin. Phys. B, 2022, 31(3): 038504.
[9] A broadband self-powered UV photodetector of a β-Ga2O3/γ-CuI p-n junction
Wei-Ming Sun(孙伟铭), Bing-Yang Sun(孙兵阳), Shan Li(李山), Guo-Liang Ma(麻国梁), Ang Gao(高昂), Wei-Yu Jiang(江为宇), Mao-Lin Zhang(张茂林), Pei-Gang Li(李培刚), Zeng Liu(刘增), and Wei-Hua Tang(唐为华). Chin. Phys. B, 2022, 31(2): 024205.
[10] Ohmic and Schottky contacts of hydrogenated and oxygenated boron-doped single-crystal diamond with hill-like polycrystalline grains
Jing-Cheng Wang(王旌丞), Hao Chen(陈浩), Lin-Feng Wan(万琳丰), Cao-Yuan Mu(牟草源), Yao-Feng Liu(刘尧峰), Shao-Heng Cheng(成绍恒), Qi-Liang Wang(王启亮), Liu-An Li(李柳暗), and Hong-Dong Li(李红东). Chin. Phys. B, 2021, 30(9): 096803.
[11] Effect of surface oxygen vacancy defects on the performance of ZnO quantum dots ultraviolet photodetector
Hongyu Ma(马宏宇), Kewei Liu(刘可为), Zhen Cheng(程祯), Zhiyao Zheng(郑智遥), Yinzhe Liu(刘寅哲), Peixuan Zhang(张培宣), Xing Chen(陈星), Deming Liu(刘德明), Lei Liu(刘雷), and Dezhen Shen(申德振). Chin. Phys. B, 2021, 30(8): 087303.
[12] Deep-ultraviolet and visible dual-band photodetectors by integrating Chlorin e6 with Ga2O3
Yue Zhao(赵越), Jin-Hao Zang(臧金浩), Xun Yang(杨珣), Xue-Xia Chen(陈雪霞), Yan-Cheng Chen(陈彦成), Kai-Yong Li(李凯永), Lin Dong(董林), and Chong-Xin Shan(单崇新). Chin. Phys. B, 2021, 30(7): 078504.
[13] Dual-wavelength ultraviolet photodetector based on vertical (Al,Ga)N nanowires and graphene
Min Zhou(周敏), Yukun Zhao(赵宇坤), Lifeng Bian(边历峰), Jianya Zhang(张建亚), Wenxian Yang(杨文献), Yuanyuan Wu(吴渊渊), Zhiwei Xing(邢志伟), Min Jiang(蒋敏), and Shulong Lu(陆书龙). Chin. Phys. B, 2021, 30(7): 078506.
[14] High-performance self-powered photodetector based on organic/inorganic hybrid van der Waals heterojunction of rubrene/silicon
Yancai Xu(徐彦彩), Rong Zhou(周荣), Qin Yin(尹钦), Jiao Li(李娇), Guoxiang Si(佀国翔), and Hongbin Zhang(张洪宾). Chin. Phys. B, 2021, 30(7): 077304.
[15] High-performing silicon-based germanium Schottky photodetector with ITO transparent electrode
Zhiwei Huang(黄志伟), Shaoying Ke(柯少颖), Jinrong Zhou(周锦荣), Yimo Zhao(赵一默), Wei Huang(黄巍), Songyan Chen(陈松岩), and Cheng Li(李成). Chin. Phys. B, 2021, 30(3): 037303.
No Suggested Reading articles found!